Topics in Catalysis

, Volume 57, Issue 1–4, pp 236–244 | Cite as

Core–Shell and Nanoporous Particle Architectures and Their Effect on the Activity and Stability of Pt ORR Electrocatalysts

  • Lin Gan
  • Chunhua Cui
  • Stefan Rudi
  • Peter Strasser
Original Paper


We review our recent progress in the development of Pt–Ni bimetallic electrocatalysts with both high sustained activity and sustained stability for oxygen reduction reaction (ORR). This was achieved by an atomic understanding and rational control of the core–shell compositional patterns and size-related nanoporosity within the bimetallic nanoparticles formed during chemical and electrochemical pretreatment and electrocatalysis. In particular, we reveal how the size of the nanoparticle directly influences the nanoporosity formation and thereby the near surface composition, catalytic activity and stability. Our atomic insights provide a clearer picture on how bimetallic nanoparticles should be tailored for optimal ORR performance.


Fuel cell electrocatalyst Pt alloys Oxygen reduction reaction Stability Aberration-corrected scanning transmission electron microscopy 


  1. 1.
    Mavrikakis M, Hammer B, Nørskov JK (1998) Effect of strain on the reactivity of metal surfaces. Phys Rev Lett 81:2819–2822CrossRefGoogle Scholar
  2. 2.
    Hammer B, Norskov JK (1995) Why gold is the noblest of all the metals. Nature 376:238–240CrossRefGoogle Scholar
  3. 3.
    Gasteiger HA, Markovic NM (2009) Just a dream-or future reality? Science 324:48–49CrossRefGoogle Scholar
  4. 4.
    Wagner FT, Lakshmanan B, Mathias MF (2010) Electrochemistry and the future of the automobile. J Phy Chem Lett 1:2204–2219CrossRefGoogle Scholar
  5. 5.
    Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51CrossRefGoogle Scholar
  6. 6.
    Eiswirth M, Bürger J, Strasser P, Ertl G (1996) Oscillating Langmuir–Hinshelwood Mechanisms. J Phys Chem 100:19118–19123Google Scholar
  7. 7.
    Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Norskov JK (2006) Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Ed 45:2897–2901CrossRefGoogle Scholar
  8. 8.
    Greeley J, Mavrikakis M (2004) Alloy catalysts designed from first principles. Nat Mater 3:810–815CrossRefGoogle Scholar
  9. 9.
    Sasaki K, Naohara H, Choi Y, Cai Y, Chen W-F, Liu P, Adzic RR (2012) Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nat Commun 3:1115CrossRefGoogle Scholar
  10. 10.
    Wang JX, Inada H, Wu LJ, Zhu YM, Choi YM, Liu P, Zhou WP, Adzic RR (2009) Oxygen reduction on well-defined core–shell nanocatalysts: particle Size, facet, and Pt shell thickness effects. J Am Chem Soc 131:17298–17302CrossRefGoogle Scholar
  11. 11.
    Adzic RR, Zhang J, Sasaki K, Vukmirovic MB, Shao M, Wang JX, Nilekar AU, Mavrikakis M, Valerio JA, Uribe F (2007) Platinum monolayer fuel cell electrocatalysts. Top Catal 46:249–262CrossRefGoogle Scholar
  12. 12.
    Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM (2006) Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: pt-skin versus Pt-skeleton surfaces. J Am Chem Soc 128:8813–8819CrossRefGoogle Scholar
  13. 13.
    Stamenkovic VR, Fowler B, Mun BS, Wang GF, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497CrossRefGoogle Scholar
  14. 14.
    Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang GF, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nature Mater 6:241–247CrossRefGoogle Scholar
  15. 15.
    Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu CF, Liu ZC, Kaya S, Nordlund D, Ogasawara H, Toney MF, Nilsson A (2010) Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat Chem 2:454–460CrossRefGoogle Scholar
  16. 16.
    Strasser P (2009) Dealloyed core-shell fuel cell electrocatalysts. Rev Chem Eng 25:255–295CrossRefGoogle Scholar
  17. 17.
    Strasser P, Koha S, Greeley J (2008) Voltammetric surface dealloying of Pt bimetallic nanoparticles: an experimental and DFT computational analysis. Phys Chem Chem Phys 10:3670–3683Google Scholar
  18. 18.
    Yu CF, Koh S, Leisch JE, Toney MF, Strasser P (2008) Size and composition distribution dynamics of alloy nanoparticle electrocatalysts probed by anomalous small angle X-ray scattering (ASAXS). Faraday Discuss 140:283–296Google Scholar
  19. 19.
    Wu JB, Gross A, Yang H (2011) Shape and composition-controlled platinum alloy nanocrystals using carbon monoxide as reducing agent. Nano Lett 11:798–802CrossRefGoogle Scholar
  20. 20.
    Zhang J, Yang HZ, Fang JY, Zou SZ (2010) Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett 10:638–644CrossRefGoogle Scholar
  21. 21.
    Cui C, Gan L, Heggen M, Rudi S, Strasser P (2013) Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat Mater 12:765–771CrossRefGoogle Scholar
  22. 22.
    van der Vliet DF, Wang C, Tripkovic D, Strmcnik D, Zhang XF, Debe MK, Atanasoski RT, Markovic NM, Stamenkovic VR (2012) Mesostructured thin films as electrocatalysts with tunable composition and surface morphology. Nat Mater 11:1051–1058Google Scholar
  23. 23.
    Hasche F, Oezaslan M, Strasser P (2010) Activity, stability and degradation of multi walled carbon nanotube (MWCNT) supported Pt fuel cell electrocatalysts. Phys Chem Chem Phys 12:15251–15258Google Scholar
  24. 24.
    Mayrhofer KJJ, Hartl K, Juhart V, Arenz M (2009) Degradation of carbon-supported pt bimetallic nanoparticles by surface segregation. J Am Chem Soc 131:16348–16349CrossRefGoogle Scholar
  25. 25.
    Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 56:9–35CrossRefGoogle Scholar
  26. 26.
    Koh S, Hahn N, Yu CF, Strasser P (2008) Effects of composition and annealing conditions on catalytic activities of dealloyed Pt–Cu nanoparticle electrocatalysts for PEMFC. J Electrochem Soc 155:B1281–B1288CrossRefGoogle Scholar
  27. 27.
    Neyerlin KC, Srivastava R, Yu CF, Strasser P (2009) Electrochemical activity and stability of dealloyed Pt-Cu and Pt-Cu-Co electrocatalysts for the oxygen reduction reaction (ORR). J Power Sources 186:261–267Google Scholar
  28. 28.
    Hasché F, Oezaslan M, Strasser P (2011) Activity, stability, and degradation mechanisms of dealloyed PtCu3 and PtCo3 nanoparticle fuel cell catalysts. ChemCatChem 3:1805–1813Google Scholar
  29. 29.
    Gan L, Heggen M, Rudi S, Strasser P (2012) Core–shell compositional fine structures of dealloyed PtxNi1-x nanoparticles and their impact on oxygen reduction catalysis. Nano Lett 12:5423–5430CrossRefGoogle Scholar
  30. 30.
    Gan L, Heggen M, O’Malley R, Theobald B, Strasser P (2013) Understanding and controlling nanoporosity formation for improving the stability of bimetallic fuel cell catalysts. Nano Lett 13:1131–1138CrossRefGoogle Scholar
  31. 31.
    Kongkanand A, Wagner FT (2013) High-activity dealloyed catalysts. 2013 DOE Hydrogen Program Annual Merit Review FC-087,
  32. 32.
    Wang RY, Xu CX, Bi XX, Ding Y (2012) Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts. Energy Environ Sci 5:5281–5286CrossRefGoogle Scholar
  33. 33.
    Chen S, Sheng WC, Yabuuchi N, Ferreira PJ, Allard LF, Shao-Horn Y (2009) Origin of oxygen reduction reaction activity on “Pt3Co” nanoparticles: atomically resolved chemical compositions and structures. J Phys Chem C 113:1109–1125CrossRefGoogle Scholar
  34. 34.
    Dutta I, Carpenter MK, Balogh MP, Ziegelbauer JM, Moylan TE, Atwan MH, Irish NP (2010) Electrochemical and structural study of a chemically dealloyed PtCu oxygen reduction catalyst. J Phys Chem C 114:16309–16320CrossRefGoogle Scholar
  35. 35.
    Snyder J, Ian McCue, Ken Livi, Erlebacher J (2012) Structure/processing/properties relationships in nanoporous nanoparticles as applied to catalysis of the cathodic oxygen reduction reaction. J Am Chem Soc 134:8633–8645CrossRefGoogle Scholar
  36. 36.
    Wang D, Yu Y, Xin HL, Hovden R, Ercius P, Mundy JA, Chen H, Richard JH, Muller DA, DiSalvo FJ, Abruña HD (2012) Tuning oxygen reduction reaction activity via controllable dealloying: a model study of ordered Cu3Pt/C intermetallic nanocatalysts. Nano Lett 12:5230–5238CrossRefGoogle Scholar
  37. 37.
    Snyder J, Fujita T, Chen MW, Erlebacher J (2010) Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts. Nat Mater 9:904–907CrossRefGoogle Scholar
  38. 38.
    Alessio R, Dell’Amico DB, Calderazzo F, Englert U, Guarini A, Labella L, Strasser P (1998) N,N-Dialkylcarbamato complexes of the d10 cations of copper, silver, and gold. Helv Chim Acta 81:219–230Google Scholar
  39. 39.
    Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992Google Scholar
  40. 40.
    Wang C, Markovic NM, Stamenkovic VR (2012) Advanced platinum alloy electrocatalysts for the oxygen reduction reaction. ACS Catal 2:891–898CrossRefGoogle Scholar
  41. 41.
    Mazumder V, Lee Y, Sun S (2010) Recent development of active nanoparticle catalysts for fuel cell reactions. Adv Funct Mater 20:1224–1231CrossRefGoogle Scholar
  42. 42.
    Ahrenstorf K, Albrecht O, Heller H, Kornowski A, Gorlitz D, Weller H (2007) Colloidal synthesis of NixPt1-x nanoparticles with tuneable composition and size. Small 3:271–274CrossRefGoogle Scholar
  43. 43.
    Ahrenstorf K, Heller H, Kornowski A, Broekaert JAC, Weller H (2008) Nucleation and growth mechanism of NixPt1-x nanoparticles. Adv Funct Mat 18:3850–3856CrossRefGoogle Scholar
  44. 44.
    Wang C, Chi MF, Wang GF, van der Vliet D, Li DG, More K, Wang HH, Schlueter JA, Markovic NM, Stamenkovic VR (2011) Correlation between surface chemistry and electrocatalytic properties of monodisperse PtxNi1-x nanoparticles. Adv Funct Mat 21:147–152CrossRefGoogle Scholar
  45. 45.
    Yang HZ, Zhang J, Kumar S, Zhang HJ, Yang RD, Fang JY, Zou SZ (2009) Monodisperse and highly active PtNi nanoparticles for O2 reduction. Electrochem Commun 11:2278–2281CrossRefGoogle Scholar
  46. 46.
    Rudi S, Tuaev X, Strasser P (2012) Electrocatalytic oxygen reduction on dealloyed Pt1−xNix alloy nanoparticle electrocatalysts. Electrocatalysis 3:265–273Google Scholar
  47. 47.
    Cui C-H; Ahmadi M; Behafarid F; Gan L; Neumann M; Heggen M; Roldan Cuenya B; Strasser P (2013) Shape-selective bimetallic nanoparticle electrocatalysts: evolution of their atomic-scale structure, chemical composition, and electrochemical reactivity under various chemical environments. Faraday DiscussionsGoogle Scholar
  48. 48.
    Wang C, Wang GF, van der Vliet D, Chang KC, Markovic NM, Stamenkovic VR (2010) Monodisperse Pt3Co nanoparticles as electrocatalyst: the effects of particle size and pretreatment on electrocatalytic reduction of oxygen. Phys Chem Chem Phys 12:6933–6939CrossRefGoogle Scholar
  49. 49.
    Wang C, Chi MF, Li DG, Strmcnik D, van der Vliett D, Wang GF, Komanicky V, Chang KC, Paulikas AP, Tripkovic D, Pearson J, More KL, Markovic NM, Stamenkovic VR (2011) Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces. J Am Chem Soc 133:14396–14403CrossRefGoogle Scholar
  50. 50.
    Gan L, Yu R, Luo J, Cheng ZY, Zhu J (2012) Lattice strain distributions in individual dealloyed Pt–Fe catalyst nanoparticles. J Phy Chem Lett 3:934–938CrossRefGoogle Scholar
  51. 51.
    Tuaev X, Rudi S, Petkov V, Hoell A, Strasser P (2013) In situ study of atomic structure transformations of Pt–Ni nanoparticle catalysts during electrochemical potential cycling. ACS Nano 7:5666–5674CrossRefGoogle Scholar
  52. 52.
    Heggen M, Oezaslan M, Houben L, Strasser P (2012) Formation and analysis of core–shell fine structures in Pt bimetallic nanoparticle fuel cell electrocatalysts. J Phys Chem C 116:19073–19083CrossRefGoogle Scholar
  53. 53.
    Oezaslan M, Heggen M, Strasser P (2012) Size-dependent morphology of dealloyed bimetallic catalysts: linking the nano to the macro scale. J Am Chem Soc 134:514–524CrossRefGoogle Scholar
  54. 54.
    Yu Z, Zhang J, Liu Z, Ziegelbauer JM, Xin H, Dutta I, Muller DA, Wagner FT (2012) Comparison between dealloyed PtCo3 and PtCu3 cathode catalysts for proton exchange membrane fuel cells. J Phys Chem C 116:19877–19885CrossRefGoogle Scholar
  55. 55.
    Liu Z, Xin H, Yu Z, Zhu Y, Zhang J, Mundy JA, Muller DA, Wagner FT (2012) Atomic-scale compositional mapping and 3-dimensional electron microscopy of dealloyed PtCo3 catalyst nanoparticles with spongy multi-core/shell structures. J Electrochem Soc 159:F554–F559CrossRefGoogle Scholar
  56. 56.
    Erlebacher J (2011) Mechanism of coarsening and bubble formation in high-genus nanoporous metals. Phys Rev Lett 106:225504CrossRefGoogle Scholar
  57. 57.
    Erlebacher J, Aziz MJ, Karma A, Dimitrov N, Sieradzki K (2001) Evolution of nanoporosity in dealloying. Nature 410:450–453CrossRefGoogle Scholar
  58. 58.
    Oezaslan M, Hasche F, Strasser P (2011) In situ observation of bimetallic alloy nanoparticle formation and growth using high-temperature XRD. Chem Mater 23:2159–2165Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Lin Gan
    • 1
  • Chunhua Cui
    • 1
  • Stefan Rudi
    • 1
  • Peter Strasser
    • 1
  1. 1.The Electrochemical Catalysis, Energy and Materials Science Laboratory, Chemical Engineering Division, Department of ChemistryTechnical University BerlinBerlinGermany

Personalised recommendations