Advertisement

Topics in Catalysis

, Volume 57, Issue 1–4, pp 171–176 | Cite as

Modeling Methyl Chloride Photo Oxidation by Oxygen Species on TiO2(110)

  • Henrik H. Kristoffersen
  • Umberto Martinez
  • Bjørk Hammer
Original Paper

Abstract

We present the reaction pathways and potential energy landscapes for photo-oxidation of methyl chloride involving oxygen species on the rutile TiO2(110) surface. Bridging oxygen atoms native to the TiO2(110) surface prove insufficient as H acceptors in the reaction. Rather oxygen atoms or hydroxyl groups bound at terminal Ti sites in the Ti troughs are required to facilitate the photo-oxidation, which can proceed all the way to formaldehyde. In the calculations, a photo-generated hole in the TiO2 valence band is assumed, while the corresponding photo-electron is omitted from the models. This prohibits the electron–hole recombination and changes the photo oxidation reaction into a fictitious electronic ground state problem, tractable by density functional theory.

Keywords

Density functional theory TiO2 Electron–hole recombination Photo oxidation Methyl chloride 

Notes

Acknowledgments

We wish to congratulate J. K. Nørskov on the occasion of his 60th year anniversary, and one of us (BH) would like to express his gratitude for being introduced to the field of computational surface science and catalysis, for many fruitful collaborative projects and for steady support and inspiration. This work was supported by the Danish Research Councils, COST action CM1104, and Danish Center for Scientific Computing.

References

  1. 1.
    Fujishima A, Zhang X, Tryk DA (2008) Surf Sci Rep 63:515CrossRefGoogle Scholar
  2. 2.
    Diebold U (2003) Surf Sci Rep 48:53CrossRefGoogle Scholar
  3. 3.
    Linsebigler A, Lu G, Yates JT (1996) J Phys Chem 100:6631CrossRefGoogle Scholar
  4. 4.
    Nadeem AM, Muir JMR, Connelly KA, Adamson BT, Metson BJ, Idriss H (2011) Phys Chem Chem Phys 13:7637CrossRefGoogle Scholar
  5. 5.
    Shiraishi Y, Togawa Y, Tsukamoto D, Tanaka S, Hirai T (2012) ACS Catal 2:2475CrossRefGoogle Scholar
  6. 6.
    Wang Z-T, Deskins NA, Henderson MA, Lyubinetsky I (2012) Phys Rev Lett 109:266103CrossRefGoogle Scholar
  7. 7.
    Wendt S, Sprunger PT, Lira E, Madsen GKH, Li Z, Hansen J, Matthiesen J, Blekinge-Rasmussen A, Lægsgaard E, Hammer B, Besenbacher F (2008) Science 320:1755CrossRefGoogle Scholar
  8. 8.
    Henderson MA (2005) J Phys Chem B 109:12062CrossRefGoogle Scholar
  9. 9.
    Shen M, Henderson MA (2012) J Phys Chem C 116:18788CrossRefGoogle Scholar
  10. 10.
    Phillips KR, Jensen SC, Baron M, Li S-C, Friend CM (2013) J Am Chem Soc 135:574CrossRefGoogle Scholar
  11. 11.
    Lu G, Linsebigler A, Yates JT (1995) J Phys Chem 99:7626CrossRefGoogle Scholar
  12. 12.
    Scheiber P, Riss A, Schmid M, Varga P, Diebold U (2010) Phys Rev Lett 105:216101CrossRefGoogle Scholar
  13. 13.
    Petrik NG, Kimmel GA (2010) J Phys Chem Lett 1:1758CrossRefGoogle Scholar
  14. 14.
    Lira E, Hansen JØ, Huo P, Bechstein R, Galliker P, Lægsgaard E, Hammer B, Wendt S, Besenbacher F (2010) Surf Sci 604:1945CrossRefGoogle Scholar
  15. 15.
    Bikondoa O, Pang CL, Ithnin R, Muryn CA, Onishi H, Thornton G (2006) Nat Mater 5:189CrossRefGoogle Scholar
  16. 16.
    Matthiesen J, Wendt S, Hansen JØ, Madsen GKH, Lira E, Galliker P, Vestergaard EK, Schaub R, Lægsgaard E, Hammer B, Besenbacher F (2009) ACS Nano 3:517CrossRefGoogle Scholar
  17. 17.
    Yoshihara T, Katoh R, Furube A, Tamaki Y, Murai M, Hara K, Murata S, Arakawa H, Tachiya M (2004) J Phys Chem B 108:3817CrossRefGoogle Scholar
  18. 18.
    Linsebigler AL, Lu G, Yates JT (1995) Chem Rev 95:735CrossRefGoogle Scholar
  19. 19.
    Henderson MA, Lyubinetsky I (2013) Chem Rev 113:4428CrossRefGoogle Scholar
  20. 20.
    Wanbayor R, Deák P, Frauenheim T, Ruangpornvisuti V (2011) J Chem Phys 134:104701CrossRefGoogle Scholar
  21. 21.
    Di Valentin C, Fittipaldi D (2013) J Phys Chem Lett 4:1901CrossRefGoogle Scholar
  22. 22.
    Chrétien S, Metiu H (2008) J Chem Phys 128:044714CrossRefGoogle Scholar
  23. 23.
    Martinez U, Hammer B (2011) J Chem Phys 134:194703CrossRefGoogle Scholar
  24. 24.
    Mortensen JJ, Hansen LB, Jacobsen KW (2005) Phys Rev B 71:035109CrossRefGoogle Scholar
  25. 25.
    Enkovaara J, Rostgaard C, Mortensen JJ, Chen J, Dułak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen HA, Kristoffersen HH, Kuisma M, Larsen AH, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses PG, Ojanen J, Olsen T, Petzold V, Romero NA, Stausholm-Møller J, Strange M, Tritsaris GA, Vanin M, Walter M, Hammer B, Häkkinen H, Madsen GKH, Nieminen RM, Nørskov JK, Puska M, Rantala TT, Schiøtz J, Thygesen KS, Jacobsen KW (2010) J Phys Condens Matter 22:253202CrossRefGoogle Scholar
  26. 26.
    Wellendorff J, Lundgaard KT, Møgelhøj A, Petzold V, Landis DD, Nørskov JK, Bligaard T, Jacobsen KW (2012) Phys Rev B 85:235149CrossRefGoogle Scholar
  27. 27.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  28. 28.
    Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113:9901CrossRefGoogle Scholar
  29. 29.
    Bahn SR, Jacobsen KW (2002) Comput Sci Eng 4:56CrossRefGoogle Scholar
  30. 30.
    Micic OI, Zhang Y, Cromack KR, Trifunac AD, Thurnauer MC (1993) J Phys Chem 97:7277CrossRefGoogle Scholar
  31. 31.
    Nakaoka Y, Nosaka Y (1997) J Photochem Photobiol A 110:299CrossRefGoogle Scholar
  32. 32.
    Deskins NA, Dupuis M (2009) J Phys Chem C 113:346CrossRefGoogle Scholar
  33. 33.
    Ji Y, Wang B, Luo Y (2012) J Phys Chem C 116:7863CrossRefGoogle Scholar
  34. 34.
    Zawadzki P, Jacobsen KW, Rossmeisl J (2011) Chem Phys Lett 506:42CrossRefGoogle Scholar
  35. 35.
    Di Valentin C, Selloni A (2011) J Phys Chem Lett 2:2223CrossRefGoogle Scholar
  36. 36.
    Stausholm-Moller J, Kristoffersen HH, Hinnemann B, Madsen GKH, Hammer B (2010) J Chem Phys 133:144708CrossRefGoogle Scholar
  37. 37.
    Iwaszuk A, Nolan M (2011) J Phys Condens Matter 23:334207CrossRefGoogle Scholar
  38. 38.
    Ghuman KK, Singh CV (2013) J Phys Condens Matter 25:085501CrossRefGoogle Scholar
  39. 39.
    Di Valentin C, Pacchioni G, Selloni A (2006) Phys Rev Lett 97:166803CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Henrik H. Kristoffersen
    • 1
  • Umberto Martinez
    • 1
  • Bjørk Hammer
    • 1
  1. 1.Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and AstronomyAarhus UniversityAarhusDenmark

Personalised recommendations