Topics in Catalysis

, Volume 57, Issue 1–4, pp 159–170 | Cite as

CO Oxidation on Pd(100) Versus PdO(101)-\((\sqrt{5}\times \sqrt{5})R27^{\circ}\): First-Principles Kinetic Phase Diagrams and Bistability Conditions

Original Paper

Abstract

We present first-principles kinetic Monte Carlo (1p-kMC) simulations addressing the CO oxidation reaction at Pd(100) for gas-phase conditions ranging from ultra-high vacuum to ambient pressures and elevated temperatures. For the latter technologically relevant regime there is a long-standing debate regarding the nature of the active surface. The pristine metallic surface, an ultra-thin \((\sqrt{5}\times \sqrt{5})R27^{\circ}\)PdO(101) surface oxide, and thicker oxide layers have each been suggested as the active state. We investigate these hypotheses with 1p-kMC simulations focusing on either the Pd(100) surface or the PdO(101) surface oxide and intriguingly obtain a range of (Tp)-conditions where both terminations appear metastable. The predicted bistability regime nicely ties in with oscillatory behavior reported experimentally by Hendriksen et al. (Catal Today 105:234, 2005). Within this regime we find that both surface terminations exhibit very similar intrinsic reactivity, which puts doubts on attempts to assign the catalytic function to just one active state.

Keywords

First-principles kinetic Monte Carlo Bistability CO oxidation catalysis Density-functional theory In situ characterization 

References

  1. 1.
    Gandhi HS, Graham GW, McCabe RW (2003) J Catal 216:433CrossRefGoogle Scholar
  2. 2.
    Gao F, Wang Y, Goodman DW (2010) J Phys Chem C 114:6874CrossRefGoogle Scholar
  3. 3.
    van Rijn R, Balmes O, Felici R, Gustafson J, Wermeille D, Westerström R, Lundgren E, Frenken JWM (2010) J Phys Chem C 114:6875CrossRefGoogle Scholar
  4. 4.
    Hirvi JT, Kinnunen T-JJ, Suvanto M, Pakkanen TA, Nørskov JK (2010) J Chem Phys 133:084704CrossRefGoogle Scholar
  5. 5.
    Zheng G, Altman EI (2002) J Phys Chem B 106:1048CrossRefGoogle Scholar
  6. 6.
    Chang S-L, Thiel PA (1988) J Chem Phys 88:2071CrossRefGoogle Scholar
  7. 7.
    Todorova M, Lundgren E, Blum V, Mikkelsen A, Gray S, Borg M, Gustafson J, Rogal J, Reuter K, Andersen JN, Scheffler M (2003) Surf Sci 541:101CrossRefGoogle Scholar
  8. 8.
    Kiss JT, Gonzalez RD (1985) Ind Eng Chem Prod Res Dev 24:216CrossRefGoogle Scholar
  9. 9.
    Gabasch H, Knop-Gericke A, Schlögl R, Borasio M, Weilach C, Rupprechter G, Penner S, Jenewein B, Hayek K, Kloetzer B (2007) Phys Chem Chem Phys 9:533CrossRefGoogle Scholar
  10. 10.
    Gao F, Lundwall M, Goodman DW (2008) J Phys Chem C 112: 6057CrossRefGoogle Scholar
  11. 11.
    Lundgren E, Gustafson J, Mikkelsen A, Andersen JN, Stierle A, Dosch H, Todorova M, Rogal J, Reuter K, Scheffler M (2004) Phys Rev Lett 92:046101CrossRefGoogle Scholar
  12. 12.
    Rogal J, Reuter K, Scheffler M (2007) Phys Rev Lett 98: 046101CrossRefGoogle Scholar
  13. 13.
    Rogal J, Reuter K, Scheffler M (2008) Phys Rev B 77:155410CrossRefGoogle Scholar
  14. 14.
    Hendriksen B, Bobaru S, Frenken J (2004) Surf Sci 552:229CrossRefGoogle Scholar
  15. 15.
    Hendriksen B, Bobaru S, Frenken J (2005) Catal Today 105: 234CrossRefGoogle Scholar
  16. 16.
    Hendriksen BLM, Ackermann MD, van Rijn R, Stoltz D, Popa I, Balmes O, Resta A, Wermeille D, Felici R, Ferrer S, Frenken JWM (2010) Nat Chem 2:730CrossRefGoogle Scholar
  17. 17.
    Rogal J, Reuter K, Scheffler M (2007) Phys Rev B 75:205433CrossRefGoogle Scholar
  18. 18.
    Zhang Y, Blum V, Reuter K (2007) Phys Rev B 75:235406CrossRefGoogle Scholar
  19. 19.
    Behm RJ, Christmann K, Ertl G, Van Hove MA (1980) J Chem Phys 73:2984CrossRefGoogle Scholar
  20. 20.
    Liu D-J, Evans JW (2006) J Chem Phys 125:054709CrossRefGoogle Scholar
  21. 21.
    Liu D-J, Evans JW (2009) Surf Sci 603:1706CrossRefGoogle Scholar
  22. 22.
    Temel B, Meskine H, Reuter K, Scheffler M, Metiu H (2007) J Chem Phys 126:204711CrossRefGoogle Scholar
  23. 23.
    Reuter K (2011) In: Deutschmann O (ed) Modeling and simulation of heterogeneous catalytic reactions: from the molecular process to the technical system, Wiley-VCH, Weinheim, p 71–112Google Scholar
  24. 24.
    Sabbe MK, Reyniers M-F, Reuter K (2012) Catal Sci Technol 2:2010CrossRefGoogle Scholar
  25. 25.
    Reuter K, Scheffler M (2006) Phys Rev B 73:045433CrossRefGoogle Scholar
  26. 26.
    Reuter K, Scheffler M (2001) Phys Rev B 65:035406CrossRefGoogle Scholar
  27. 27.
    Chase MW Jr (1998) J Phys Chem Ref Data 9: 1Google Scholar
  28. 28.
    Jonsson H, Mills G, Jacobson KW (1998) Nudged elastic band method for finding minimum energy paths of transitions. In: Berne BJ, Cicotti G, Coker DF (eds) Classical and quantum dynamics in condensed phase simulations, World Scientific, New JerseyGoogle Scholar
  29. 29.
    Henkelman G, Uberuaga BP, Jonsson H (2000) J Chem Phys 113: 9901CrossRefGoogle Scholar
  30. 30.
    Kostelnik P, Seriani N, Kresse G, Mikkelsen A, Lundgren E, Blum V, Sikola T, Varga P, Schmid M (2007) Surf Sci 601: 1574CrossRefGoogle Scholar
  31. 31.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77: 3865CrossRefGoogle Scholar
  32. 32.
    Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC, (2009) Z Kristallogr 220:567Google Scholar
  33. 33.
    Stuve E, Madix R, Brundle C (1984) Surf Sci 146:155CrossRefGoogle Scholar
  34. 34.
    Uvdal P, Karlsson P-A, Nyberg C, Andersson S, Richardson NV (1988) Surf Sci 202:167CrossRefGoogle Scholar
  35. 35.
    Tüshaus M, Berndt W, Conrad H, Bradshaw AM, Persson B (1990) Appl Phys A 51:91CrossRefGoogle Scholar
  36. 36.
    Rieder K, Stocker W (1985) Surf Sci 150: L66CrossRefGoogle Scholar
  37. 37.
    Bradshaw AM, Hoffmann FM (1978) Surf Sci 72:513CrossRefGoogle Scholar
  38. 38.
    Brundle CR, Behm J, Barker JA (1984) J Vac Sci Technol A 2:1038CrossRefGoogle Scholar
  39. 39.
    Chang SL, Thiel PA (1987) Phys Rev Lett 59:296CrossRefGoogle Scholar
  40. 40.
    Liu D-J, Evans JW (2006) J Chem Phys 124:154705CrossRefGoogle Scholar
  41. 41.
    Meyer J, Reuter K (private communication)Google Scholar
  42. 42.
    Hammer B (2001) J Catal 199:171CrossRefGoogle Scholar
  43. 43.
    Eichler A (2002) Surf Sci 498:314CrossRefGoogle Scholar
  44. 44.
    Zhang CJ, Hu P (2001) J Am Chem Soc 123:1166CrossRefGoogle Scholar
  45. 45.
    Hoffmann MJ, Matera S, Reuter K (in preparation). http://mhoffman.github.com/kmos
  46. 46.
    Zheng G, Altman EI (2002) Surf Sci 504:253CrossRefGoogle Scholar
  47. 47.
    Reuter K, Scheffler M (2003) Phys Rev Lett 90:046103CrossRefGoogle Scholar
  48. 48.
    Reuter K, Scheffler M (2003) Phys Rev B 68:045407CrossRefGoogle Scholar
  49. 49.
    van Rijn R, Balmes O, Resta A, Wermeille D, Westerström R, Gustafson J, Felici R, Lundgren E, Frenken JWM (2011) Phys Chem Chem Phys 13: 13167CrossRefGoogle Scholar
  50. 50.
    Matera S, Reuter K (2009) Catal Lett 133:156CrossRefGoogle Scholar
  51. 51.
    Matera S, Reuter K (2010) Phys Rev B 82:085446CrossRefGoogle Scholar
  52. 52.
    Reuter K (2006) Oil & Gas Sci. and Technol–Rev IFP 61:471CrossRefGoogle Scholar
  53. 53.
    Over H, Muhler M (2003) Prog Surf Sci 72: 3CrossRefGoogle Scholar
  54. 54.
    Sales B, Turner J, Maple M (1982) Surf Sci 114:381CrossRefGoogle Scholar
  55. 55.
    Bykov VI, Yablonskii GS, Elokhin VI (1981) Surf Sci Lett 107:L334Google Scholar
  56. 56.
    Bär M, Zülicke Ch, Eiswirth M, Ertl G (1992) J Chem Phys 96: 8595CrossRefGoogle Scholar
  57. 57.
    Zhdanov VP, Kasemo B (1994) Surf Sci Rep 20:113CrossRefGoogle Scholar
  58. 58.
    Eiswirth M, Bürger J, Strasser P, Ertl G (1996) J Phys Chem 100:19118CrossRefGoogle Scholar
  59. 59.
    Ziff RM, Gulari E, Barshad Y (1986) Phys Rev Lett 56: 2553CrossRefGoogle Scholar
  60. 60.
    Evans JW (1991) Langmuir 7:2514CrossRefGoogle Scholar
  61. 61.
    Reuter K, Frenkel D, Scheffler M (2004) Phys Rev Lett 93: 116105CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department ChemieTechnische Universität MünchenGarchingGermany

Personalised recommendations