Topics in Catalysis

, Volume 57, Issue 1–4, pp 159–170 | Cite as

CO Oxidation on Pd(100) Versus PdO(101)-\((\sqrt{5}\times \sqrt{5})R27^{\circ}\): First-Principles Kinetic Phase Diagrams and Bistability Conditions

Original Paper


We present first-principles kinetic Monte Carlo (1p-kMC) simulations addressing the CO oxidation reaction at Pd(100) for gas-phase conditions ranging from ultra-high vacuum to ambient pressures and elevated temperatures. For the latter technologically relevant regime there is a long-standing debate regarding the nature of the active surface. The pristine metallic surface, an ultra-thin \((\sqrt{5}\times \sqrt{5})R27^{\circ}\)PdO(101) surface oxide, and thicker oxide layers have each been suggested as the active state. We investigate these hypotheses with 1p-kMC simulations focusing on either the Pd(100) surface or the PdO(101) surface oxide and intriguingly obtain a range of (Tp)-conditions where both terminations appear metastable. The predicted bistability regime nicely ties in with oscillatory behavior reported experimentally by Hendriksen et al. (Catal Today 105:234, 2005). Within this regime we find that both surface terminations exhibit very similar intrinsic reactivity, which puts doubts on attempts to assign the catalytic function to just one active state.


First-principles kinetic Monte Carlo Bistability CO oxidation catalysis Density-functional theory In situ characterization 


  1. 1.
    Gandhi HS, Graham GW, McCabe RW (2003) J Catal 216:433CrossRefGoogle Scholar
  2. 2.
    Gao F, Wang Y, Goodman DW (2010) J Phys Chem C 114:6874CrossRefGoogle Scholar
  3. 3.
    van Rijn R, Balmes O, Felici R, Gustafson J, Wermeille D, Westerström R, Lundgren E, Frenken JWM (2010) J Phys Chem C 114:6875CrossRefGoogle Scholar
  4. 4.
    Hirvi JT, Kinnunen T-JJ, Suvanto M, Pakkanen TA, Nørskov JK (2010) J Chem Phys 133:084704CrossRefGoogle Scholar
  5. 5.
    Zheng G, Altman EI (2002) J Phys Chem B 106:1048CrossRefGoogle Scholar
  6. 6.
    Chang S-L, Thiel PA (1988) J Chem Phys 88:2071CrossRefGoogle Scholar
  7. 7.
    Todorova M, Lundgren E, Blum V, Mikkelsen A, Gray S, Borg M, Gustafson J, Rogal J, Reuter K, Andersen JN, Scheffler M (2003) Surf Sci 541:101CrossRefGoogle Scholar
  8. 8.
    Kiss JT, Gonzalez RD (1985) Ind Eng Chem Prod Res Dev 24:216CrossRefGoogle Scholar
  9. 9.
    Gabasch H, Knop-Gericke A, Schlögl R, Borasio M, Weilach C, Rupprechter G, Penner S, Jenewein B, Hayek K, Kloetzer B (2007) Phys Chem Chem Phys 9:533CrossRefGoogle Scholar
  10. 10.
    Gao F, Lundwall M, Goodman DW (2008) J Phys Chem C 112: 6057CrossRefGoogle Scholar
  11. 11.
    Lundgren E, Gustafson J, Mikkelsen A, Andersen JN, Stierle A, Dosch H, Todorova M, Rogal J, Reuter K, Scheffler M (2004) Phys Rev Lett 92:046101CrossRefGoogle Scholar
  12. 12.
    Rogal J, Reuter K, Scheffler M (2007) Phys Rev Lett 98: 046101CrossRefGoogle Scholar
  13. 13.
    Rogal J, Reuter K, Scheffler M (2008) Phys Rev B 77:155410CrossRefGoogle Scholar
  14. 14.
    Hendriksen B, Bobaru S, Frenken J (2004) Surf Sci 552:229CrossRefGoogle Scholar
  15. 15.
    Hendriksen B, Bobaru S, Frenken J (2005) Catal Today 105: 234CrossRefGoogle Scholar
  16. 16.
    Hendriksen BLM, Ackermann MD, van Rijn R, Stoltz D, Popa I, Balmes O, Resta A, Wermeille D, Felici R, Ferrer S, Frenken JWM (2010) Nat Chem 2:730CrossRefGoogle Scholar
  17. 17.
    Rogal J, Reuter K, Scheffler M (2007) Phys Rev B 75:205433CrossRefGoogle Scholar
  18. 18.
    Zhang Y, Blum V, Reuter K (2007) Phys Rev B 75:235406CrossRefGoogle Scholar
  19. 19.
    Behm RJ, Christmann K, Ertl G, Van Hove MA (1980) J Chem Phys 73:2984CrossRefGoogle Scholar
  20. 20.
    Liu D-J, Evans JW (2006) J Chem Phys 125:054709CrossRefGoogle Scholar
  21. 21.
    Liu D-J, Evans JW (2009) Surf Sci 603:1706CrossRefGoogle Scholar
  22. 22.
    Temel B, Meskine H, Reuter K, Scheffler M, Metiu H (2007) J Chem Phys 126:204711CrossRefGoogle Scholar
  23. 23.
    Reuter K (2011) In: Deutschmann O (ed) Modeling and simulation of heterogeneous catalytic reactions: from the molecular process to the technical system, Wiley-VCH, Weinheim, p 71–112Google Scholar
  24. 24.
    Sabbe MK, Reyniers M-F, Reuter K (2012) Catal Sci Technol 2:2010CrossRefGoogle Scholar
  25. 25.
    Reuter K, Scheffler M (2006) Phys Rev B 73:045433CrossRefGoogle Scholar
  26. 26.
    Reuter K, Scheffler M (2001) Phys Rev B 65:035406CrossRefGoogle Scholar
  27. 27.
    Chase MW Jr (1998) J Phys Chem Ref Data 9: 1Google Scholar
  28. 28.
    Jonsson H, Mills G, Jacobson KW (1998) Nudged elastic band method for finding minimum energy paths of transitions. In: Berne BJ, Cicotti G, Coker DF (eds) Classical and quantum dynamics in condensed phase simulations, World Scientific, New JerseyGoogle Scholar
  29. 29.
    Henkelman G, Uberuaga BP, Jonsson H (2000) J Chem Phys 113: 9901CrossRefGoogle Scholar
  30. 30.
    Kostelnik P, Seriani N, Kresse G, Mikkelsen A, Lundgren E, Blum V, Sikola T, Varga P, Schmid M (2007) Surf Sci 601: 1574CrossRefGoogle Scholar
  31. 31.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77: 3865CrossRefGoogle Scholar
  32. 32.
    Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC, (2009) Z Kristallogr 220:567Google Scholar
  33. 33.
    Stuve E, Madix R, Brundle C (1984) Surf Sci 146:155CrossRefGoogle Scholar
  34. 34.
    Uvdal P, Karlsson P-A, Nyberg C, Andersson S, Richardson NV (1988) Surf Sci 202:167CrossRefGoogle Scholar
  35. 35.
    Tüshaus M, Berndt W, Conrad H, Bradshaw AM, Persson B (1990) Appl Phys A 51:91CrossRefGoogle Scholar
  36. 36.
    Rieder K, Stocker W (1985) Surf Sci 150: L66CrossRefGoogle Scholar
  37. 37.
    Bradshaw AM, Hoffmann FM (1978) Surf Sci 72:513CrossRefGoogle Scholar
  38. 38.
    Brundle CR, Behm J, Barker JA (1984) J Vac Sci Technol A 2:1038CrossRefGoogle Scholar
  39. 39.
    Chang SL, Thiel PA (1987) Phys Rev Lett 59:296CrossRefGoogle Scholar
  40. 40.
    Liu D-J, Evans JW (2006) J Chem Phys 124:154705CrossRefGoogle Scholar
  41. 41.
    Meyer J, Reuter K (private communication)Google Scholar
  42. 42.
    Hammer B (2001) J Catal 199:171CrossRefGoogle Scholar
  43. 43.
    Eichler A (2002) Surf Sci 498:314CrossRefGoogle Scholar
  44. 44.
    Zhang CJ, Hu P (2001) J Am Chem Soc 123:1166CrossRefGoogle Scholar
  45. 45.
    Hoffmann MJ, Matera S, Reuter K (in preparation).
  46. 46.
    Zheng G, Altman EI (2002) Surf Sci 504:253CrossRefGoogle Scholar
  47. 47.
    Reuter K, Scheffler M (2003) Phys Rev Lett 90:046103CrossRefGoogle Scholar
  48. 48.
    Reuter K, Scheffler M (2003) Phys Rev B 68:045407CrossRefGoogle Scholar
  49. 49.
    van Rijn R, Balmes O, Resta A, Wermeille D, Westerström R, Gustafson J, Felici R, Lundgren E, Frenken JWM (2011) Phys Chem Chem Phys 13: 13167CrossRefGoogle Scholar
  50. 50.
    Matera S, Reuter K (2009) Catal Lett 133:156CrossRefGoogle Scholar
  51. 51.
    Matera S, Reuter K (2010) Phys Rev B 82:085446CrossRefGoogle Scholar
  52. 52.
    Reuter K (2006) Oil & Gas Sci. and Technol–Rev IFP 61:471CrossRefGoogle Scholar
  53. 53.
    Over H, Muhler M (2003) Prog Surf Sci 72: 3CrossRefGoogle Scholar
  54. 54.
    Sales B, Turner J, Maple M (1982) Surf Sci 114:381CrossRefGoogle Scholar
  55. 55.
    Bykov VI, Yablonskii GS, Elokhin VI (1981) Surf Sci Lett 107:L334Google Scholar
  56. 56.
    Bär M, Zülicke Ch, Eiswirth M, Ertl G (1992) J Chem Phys 96: 8595CrossRefGoogle Scholar
  57. 57.
    Zhdanov VP, Kasemo B (1994) Surf Sci Rep 20:113CrossRefGoogle Scholar
  58. 58.
    Eiswirth M, Bürger J, Strasser P, Ertl G (1996) J Phys Chem 100:19118CrossRefGoogle Scholar
  59. 59.
    Ziff RM, Gulari E, Barshad Y (1986) Phys Rev Lett 56: 2553CrossRefGoogle Scholar
  60. 60.
    Evans JW (1991) Langmuir 7:2514CrossRefGoogle Scholar
  61. 61.
    Reuter K, Frenkel D, Scheffler M (2004) Phys Rev Lett 93: 116105CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department ChemieTechnische Universität MünchenGarchingGermany

Personalised recommendations