Advertisement

Topics in Catalysis

, Volume 57, Issue 1–4, pp 143–158 | Cite as

Methanol Conversion to Hydrocarbons (MTH) Over H-ITQ-13 (ITH) Zeolite

  • Wegard Skistad
  • Shewangizaw Teketel
  • Francesca Lønstad Bleken
  • Pablo Beato
  • Silvia Bordiga
  • Merete Hellner Nilsen
  • Unni Olsbye
  • Stian SvelleEmail author
  • Karl Petter Lillerud
Original Paper

Abstract

Product flexibility is key to meeting fluctuating chemicals demands in the future. In this contribution, the methanol to hydrocarbons (MTH) reaction was investigated over two Ge-containing H-ITQ-13 samples, one with needle-like (H-ITQ-13(N), with (Si+Ge)/Al) = 42) and another with plate-like (H-ITQ-13(P), with (Si+Ge)/Al > 100) morphology. The samples were characterised using XRD, BET, SEM/EDS and FTIR spectroscopy, and their MTH performance was compared with the performance of H-ZSM-5 and H-ZSM-22. Similar specific surface areas (413 and 455 m2 g−1 for H-ITQ-13(N) and (P), respectively) and similar acid strength (Δν ~ −327(−310) cm−1) was observed for the two H-ITQ-13 samples. Testing of H-ITQ-13(N) at weight hourly space velocity (WHSV) = 2–8 h−1 at 350–450 °C revealed that C5+ alkenes were the main products (35–45 % selectivity at 400 °C), followed by propene and butene. A low but significant selectivity for aromatic products was observed (6–8 % selectivity at 400 °C). Product selectivity was found to be independent of deactivation. The methanol conversion capacity of H-ITQ-13(N) was 120–150 g methanol g−1 catalyst at 400 °C. Testing H-ITQ-13 at high (30 atm) and ambient pressure, respectively, at 350 °C showed that a high pressure led to enhanced C5+ selectivity, but close to a tenfold decrease in methanol conversion capacity. H-ITQ-13(P) was tested at 400 °C and 2 h−1. It gave lower conversion than H-ITQ-13(N). Furthermore, when compared at the same conversion level, H-ITQ-13(P) gave higher C5+ alkene selectivity, lower aromatics selectivity, and a higher propene to ethene ratio than H-ITQ-13(N). The H-ITQ-13 samples yielded a product spectrum intermediate of H-ZSM-22 and H-ZSM-5. The effluent product cut-off of H-ITQ-13 was similar to that of H-ZSM-5 with tetramethylbenzene as the largest significant product, while H-ZSM-22 produced mainly linear and branched alkenes. The lifetime of H-ITQ-13(N) was clearly enhanced compared to H-ZSM-22, but inferior to H-ZSM-5.

Keywords

Methanol Zeolites Hydrocarbons MTH H-ITQ-13 

Supplementary material

11244_2013_170_MOESM1_ESM.doc (2.4 mb)
Supplementary material 1 (DOC 2448 kb)

References

  1. 1.
  2. 2.
    Chang CD, Silvestri AJ (1977) J Catal 47:249–259CrossRefGoogle Scholar
  3. 3.
    Stöcker M (1999) Microporous Mesoporous Mater 29:3–48CrossRefGoogle Scholar
  4. 4.
    Haw JF, Song WG, Marcus DM, Nicholas JB (2003) Acc Chem Res 36:317–326CrossRefGoogle Scholar
  5. 5.
    Olsbye U, Svelle S, Bjørgen M, Beato P, Janssens TVW, Joensen F, Bordiga S, Lillerud KP (2012) Angew Chem Int Ed 51:5810–5831CrossRefGoogle Scholar
  6. 6.
    Chen NY, Reagan WJ (1979) J Catal 59:123–129CrossRefGoogle Scholar
  7. 7.
    Dahl IM, Kolboe S (1993) Catal Lett 20:329–336CrossRefGoogle Scholar
  8. 8.
    Dahl IM, Kolboe S (1994) J Catal 149:458–464CrossRefGoogle Scholar
  9. 9.
    Dahl IM, Kolboe S (1996) J Catal 161:304–309CrossRefGoogle Scholar
  10. 10.
    Song WG, Marcus DM, Fu H, Ehresmann JO, Haw JF (2002) J Am Chem Soc 124:3844–3845CrossRefGoogle Scholar
  11. 11.
    Lesthaeghe D, Van Speybroeck V, Marin GB, Waroquier M (2006) Angew Chem Int Ed 45:1714–1719CrossRefGoogle Scholar
  12. 12.
    Wragg DS, O’Brien MG, Bleken FL, Di Michiel M, Olsbye U, Fjellvag H (2012) Angew Chem Int Ed 51:7956–7959CrossRefGoogle Scholar
  13. 13.
    White JL (2011) Catal Sci Technol 1:1630–1635CrossRefGoogle Scholar
  14. 14.
    Smit B, Maesen TLM (2008) Chem Rev 108:4125–4184CrossRefGoogle Scholar
  15. 15.
    Arstad B, Kolboe S (2001) J Am Chem Soc 123:8137–8138CrossRefGoogle Scholar
  16. 16.
    Arstad B, Kolboe S (2001) Catal Lett 71:209–212CrossRefGoogle Scholar
  17. 17.
    Song WG, Haw JF, Nicholas JB, Heneghan CS (2000) J Am Chem Soc 122:10726–10727CrossRefGoogle Scholar
  18. 18.
    Sassi A, Wildman MA, Ahn HJ, Prasad P, Nicholas JB, Haw JF (2002) J Phys Chem B 106:2294–2303CrossRefGoogle Scholar
  19. 19.
    Bjørgen M, Olsbye U, Petersen D, Kolboe S (2004) J Catal 221:1–10CrossRefGoogle Scholar
  20. 20.
    Svelle S, Rønning PO, Kolboe S (2004) J Catal 224:115–123CrossRefGoogle Scholar
  21. 21.
    Svelle S, Rønning PO, Olsbye U, Kolboe S (2005) J Catal 234:385–400CrossRefGoogle Scholar
  22. 22.
    Bjørgen M, Akyalcin S, Olsbye U, Benard S, Kolboe S, Svelle S (2010) J Catal 275:170–180CrossRefGoogle Scholar
  23. 23.
    Bjørgen M, Joensen F, Lillerud KP, Olsbye U, Svelle S (2009) Catal Today 142:90–97CrossRefGoogle Scholar
  24. 24.
    Svelle S, Joensen F, Nerlov J, Olsbye U, Lillerud KP, Kolboe S, Bjørgen M (2006) J Am Chem Soc 128:14770–14771CrossRefGoogle Scholar
  25. 25.
    Bjørgen M, Svelle S, Joensen F, Nerlov J, Kolboe S, Bonino F, Palumbo L, Bordiga S, Olsbye U (2007) J Catal 249:195–207CrossRefGoogle Scholar
  26. 26.
    Svelle S, Olsbye U, Joensen F, Bjørgen M (2007) J Phys Chem C 111:17981–17984CrossRefGoogle Scholar
  27. 27.
    Teketel S, Olsbye U, Lillerud KP, Beato P, Svelle S (2010) Microporous Mesoporous Mater 136:33–41CrossRefGoogle Scholar
  28. 28.
    Topp-Jørgensen J (1988) Stud Surf Sci Catal 36:293–305CrossRefGoogle Scholar
  29. 29.
    Kvisle S, Nilsen HR, Fuglerud T, Grønvold A, Pujado PR, Barger PT, Andersen JM (2002) Abstr Pap Am Chem Soc 223:U648Google Scholar
  30. 30.
    Kvisle S, Fuglerud T, Olsbye U, Lillerud KP, Vora BV (2008) Methanol-to-hydrocarbons. In: Ertl G, Knozinger H, Weitkamp J (eds) Handbook of heterogeneous catalysis. Wiley-VCH Verlag GmbH, Weinheim, pp 2950–2965Google Scholar
  31. 31.
    Chang CD, Chu CTW, Socha RF (1984) J Catal 86:289–296CrossRefGoogle Scholar
  32. 32.
    Chu CTW, Chang CD (1984) J Catal 86:297–300CrossRefGoogle Scholar
  33. 33.
    Prinz D, Riekert L (1988) Appl Catal 37:139–154CrossRefGoogle Scholar
  34. 34.
    Beken BTL, Wragg DS, Arstad B, Gunnæs AE, Mouzon J, Helveg S, Lundegaard LF, Beato P, Bordiga S, Svelle S, Olsbye U, Lillerud KP (2013) Top Catal (in press)Google Scholar
  35. 35.
    Lønstad Bleken F, Chavan S, Olsbye U, Boltz M, Ocampo F, Louis B (2012) Appl Catal A 447–448:178–185CrossRefGoogle Scholar
  36. 36.
    Park JW, Kim SJ, Seo M, Kim SY, Sugi Y, Seo G (2008) Appl Catal A 349:76–85CrossRefGoogle Scholar
  37. 37.
    International Zeolite Association, http://www.iza-online.org. Accessed 12 Dec 2012
  38. 38.
    Corma A, Jiang JX, Yu JH (2010) Angew Chem Int Ed 49:3120–3145CrossRefGoogle Scholar
  39. 39.
    Castaneda R, Corma A, Fornes V, Martinez-Triguero J, Valencia S (2006) J Catal 238:79–87CrossRefGoogle Scholar
  40. 40.
    Boix T, Puche M, Camblor MA, Corma A (2002) US 6,471,941 B1, to ExxonMobil Research and Engineering CompanyGoogle Scholar
  41. 41.
    Sastre G, Pulido A, Castaneda R, Corma A (2004) J Phys Chem 108:8830–8835CrossRefGoogle Scholar
  42. 42.
    Corma A, Diaz-Cabanas MJ, Jiang J, Afeworki M, Dorset DL, Soled SL, Strohmaier KG, Natl P (2010) Acad Sci USA 107:13997–14002CrossRefGoogle Scholar
  43. 43.
    Petkov PS, Aleksandrov HA, Valtchev V, Vayssilov GN (2012) Chem Mater 24:2509–2518CrossRefGoogle Scholar
  44. 44.
    Jiang JX, Jorda JL, Diaz-Cabanas MJ, Yu JH, Corma A (2010) Angew Chem Int Ed 49:4986–4988CrossRefGoogle Scholar
  45. 45.
    Vidal-Moya JA, Blasco T, Rey F, Corma A, Puche M (2003) Chem Mater 15:3961–3963CrossRefGoogle Scholar
  46. 46.
    Sastre G, Vidal-Moya JA, Blasco T, Rius J, Jorda JL, Navarro MT, Rey F, Corma A (2002) Angew Chem Int Ed 41:4722–4726CrossRefGoogle Scholar
  47. 47.
    Kosslick H, Tuan VA, Fricke R, Peuker C, Pilz W, Storek W (1993) J Phys Chem 97:5678–5684CrossRefGoogle Scholar
  48. 48.
    Skorpa R, Bordiga S, Bleken F, Olsbye U, Arstad B, Tolchard J, Mathisen K, Svelle S, Bjørgen M (2011) Microporous Mesoporous Mater 141:146–156CrossRefGoogle Scholar
  49. 49.
    Leiva S, Sabater MJ, Valencia S, Sastre G, Fornes V, Rey F, Corma A (2005) Cr Chim 8:369–378CrossRefGoogle Scholar
  50. 50.
    Gribov EN, Cocina D, Spoto G, Bordiga S, Ricchiardi G, Zecchina A (2006) Phys Chem Chem Phys 8:1186–1196CrossRefGoogle Scholar
  51. 51.
    Bleken F, Skistad W, Barbera K, Kustova M, Bordiga S, Beato P, Lillerud KP, Svelle S, Olsbye U (2011) Phys Chem Chem Phys 13:2539–2549CrossRefGoogle Scholar
  52. 52.
    Bjørgen M, Lillerud KP, Olsbye U, Bordiga S, Zecchina A (2004) J Phys Chem B 108:7862–7870CrossRefGoogle Scholar
  53. 53.
    Mikkelsen Ø, Kolboe S (1999) Microporous Mesoporous Mater 29:173–184CrossRefGoogle Scholar
  54. 54.
    Schulz H (2010) Catal Today 154:183–194CrossRefGoogle Scholar
  55. 55.
    Bleken FL, Janssens TVW, Svelle S, Olsbye U (2012) Microporous Mesoporous Mater 164:190–198CrossRefGoogle Scholar
  56. 56.
    Teketel S, Skistad W, Benard S, Olsbye U, Lillerud KP, Beato P, Svelle S (2012) ACS Catal 2:26–37CrossRefGoogle Scholar
  57. 57.
    Janssens TVW (2009) J Catal 264:130–137CrossRefGoogle Scholar
  58. 58.
    Kumar P, Thybaut JW, Teketel S, Svelle S, Beato P, Olsbye U, Marin GB (2013) Catal Today 215:224–232Google Scholar
  59. 59.
    Sazama P, Wichterlova B, Dedecek J, Tvaruzkova Z, Musilova Z, Palumbo L, Sklenak S, Gonsiorova O (2011) Microporous Mesoporous Mater 143:87–96CrossRefGoogle Scholar
  60. 60.
    Hayasaka K, Liang D, Huybrechts W, De Waele BR, Houthoofd KJ, Eloy P, Gaigneaux EM, van Tendeloo G, Thybaut JW, Marin GB, Denayer JFM, Baron GV, Jacobs PA, Kirschhock CEA, Martens JA (2007) Chem Eur J 13:10070–10077CrossRefGoogle Scholar
  61. 61.
    Teketel S, Svelle S, Lillerud KP, Olsbye U (2009) ChemCatChem 1:78–81CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Wegard Skistad
    • 1
  • Shewangizaw Teketel
    • 1
  • Francesca Lønstad Bleken
    • 1
  • Pablo Beato
    • 2
  • Silvia Bordiga
    • 1
    • 3
  • Merete Hellner Nilsen
    • 1
  • Unni Olsbye
    • 1
  • Stian Svelle
    • 1
    Email author
  • Karl Petter Lillerud
    • 1
  1. 1.inGAP Center for Research Based Innovation, Department of ChemistryUniversity of OsloOsloNorway
  2. 2.Haldor TopsøeKgs. LyngbyDenmark
  3. 3.Department of Chemistry, INSTM Centro di Riferimento and NIS Centre of ExcellenceUniversita’ di TorinoTurinItaly

Personalised recommendations