Topics in Catalysis

, Volume 57, Issue 1–4, pp 118–124 | Cite as

Catalytic Dry Reforming of Methane on Ruthenium-Doped Ceria and Ruthenium Supported on Ceria

  • Alan R. Derk
  • George M. Moore
  • Sudhanshu Sharma
  • Eric W. McFarland
  • Horia Metiu
Original Paper

Abstract

Two types of Ru–ceria catalysts were investigated, one prepared by combustion to create an atomically doped metal oxide, and the other, prepared by impregnation, as supported Ru oxide. They have different physical properties (as measured by X-ray photoelectron spectroscopy, X-ray diffraction, and Infrared spectra of adsorbed CO) but identical catalytic activity for dry reforming of methane. We show that the catalyst for dry reforming is partially reduced using XPS and IR spectroscopy. Furthermore, transient oxidation reaction spectroscopy with oxygen pulses confirms partial reduction of the catalyst is necessary for dry reforming activity.

Keywords

Ceria Ruthenium Methane Dry reforming Doped oxide catalysts 

Notes

Acknowledgments

Funding for this work was provided by the Air Force Office of Scientific Research (FA9550-12-1-0147) and the U.S. Department of Energy (DE-FG02-89ER140048). The Advanced Photon Source is supported by the Department of Energy, Office of Basic Energy Sciences under contract no. DE-AC02-06CH11357. We thank Tom Mates for help in gathering XPS spectra. ARD would like to thank the National Science Foundation for a Graduate Research Fellowship under grant DGE 0707430. Financial support of GMM and the MRL Central Facilities are supported by the MRSEC Program of the National Science Foundation (NSF) under Award No. DMR 1121053; a member of the NSF-funded Materials Research Facilities Network (www.mrfn.org).

Supplementary material

11244_2013_167_MOESM1_ESM.pdf (55 kb)
Supplementary material 1 (PDF 54 kb)

References

  1. 1.
    Rostrup-Nielsen J, Christiansen LJ (2011) Concepts in syngas manufacture. Imperial College Press, LondonGoogle Scholar
  2. 2.
    Bartolomew CH, Farauto RJ (2006) Fundamentals of industrial catalytic processes. Wiley, New YorkGoogle Scholar
  3. 3.
    Bradford M, Vannice M (1999) Catal Rev 41:1–42CrossRefGoogle Scholar
  4. 4.
    York APE, Xiao T, Green MLH, Claridge JB (2007) Catal Rev 49:511–560CrossRefGoogle Scholar
  5. 5.
    Raudaskoski R, Turpeinen E, Lenkkeri R, Pongrácz E, Keiski RL (2009) Catal Today 144:318–323CrossRefGoogle Scholar
  6. 6.
    Avetisov AK, Rostrup-Nielsen JR, Kuchaev VL, Bak Hansen J-H, Zyskin AG, Shapatina EN (2010) J Mol Catal A 315:155–162CrossRefGoogle Scholar
  7. 7.
    Rostrup-Nielsen JR, Bak Hansen J-H (1993) J Catal 144:38–49CrossRefGoogle Scholar
  8. 8.
    Safariamin M, Tidahy LH, Abi-Aad E, Siffert S, Aboukaïs A (2009) C R Chimie 12:748–753CrossRefGoogle Scholar
  9. 9.
    Nakagawa K, Hideshima S, Akamatsu N, Matsui N, Ikenaga N, Suzuki T (2002) In: Song C et al. (eds) CO2 conversion and utilization, Chap. 14. ACS symposium series. ACS, Washington DC, pp. 205–233Google Scholar
  10. 10.
    Gallego GS, Batiot-Dupeyrat C, Barrault J, Mondragon F (2008) Ind Eng Chem Res 47:9272–9278Google Scholar
  11. 11.
    Hegde MS, Madras G, Patil KC (2009) Acc Chem Res 42:704–712CrossRefGoogle Scholar
  12. 12.
    Laachir A, Perrichon V, Badri A, Lamotte J, Catherine E, Lavelley JC, El Fallah J, Hilaire L, le Normand F, Quemere E, Sauvion GN, Touret O (1991) J Chem Soc Faraday Trans 87:1601–1609CrossRefGoogle Scholar
  13. 13.
    Perrichon V, Laachir A, Bergeret G, Frety R, Turnayan L, Touret O (1994) J Chem Soc Faraday Trans 90:773–781CrossRefGoogle Scholar
  14. 14.
    De Leitenburg C, Trovarelli A, Kaspar J (1997) J Catal 166:98–107CrossRefGoogle Scholar
  15. 15.
    Singh P, Hegde MS (2009) Chem Mater 21:3337–3345CrossRefGoogle Scholar
  16. 16.
    Bernal S, Calvino JJ, Cifredo GA, Gatica JM, Omil JAP, Pintado JM (1993) J Chem Soc Faraday Trans 89:3499–3505CrossRefGoogle Scholar
  17. 17.
    Adachi G, Imanak N, Kang ZC (eds) (2004) Binary rare earth oxides. Kluwer Academic Publishers, DordrechtGoogle Scholar
  18. 18.
    Toby BH (2001) J Appl Crystallogr 34:210–213CrossRefGoogle Scholar
  19. 19.
    Larson AC, Von Dreele RB (2004) Los Alamos National Labs Report LAUR 86–748: general structure analysis system (GSAS). http://www.ncnr.nist.gov/xtal/software/gsas.html
  20. 20.
    Ernst MA, Sloof WG (2008) Surf Interface Anal 40:334–337CrossRefGoogle Scholar
  21. 21.
    Chin SY, Williams CT, Amiridis MD (2006) J Phys Chem B 110:871–882CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Alan R. Derk
    • 1
  • George M. Moore
    • 1
  • Sudhanshu Sharma
    • 2
  • Eric W. McFarland
    • 1
  • Horia Metiu
    • 3
  1. 1.Department of Chemical EngineeringUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Department of ChemistryIIT GandhinagarAhmedabadIndia
  3. 3.Department of Chemistry and BiochemistryUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations