Topics in Catalysis

, Volume 57, Issue 1–4, pp 89–105 | Cite as

Coverage-Dependent Adsorption at a Low Symmetry Surface: DFT and Statistical Analysis of Oxygen Chemistry on Kinked Pt(321)

Original Paper

Abstract

We explore the influence of adsorbate interactions on the thermodynamic and spectroscopic properties of oxygen on the stepped, kinked Pt(321) surface. The ground state arrangements of atomic oxygen are identified with the aid of a cluster expansion and analyzed for coverages up to one oxygen per surface Pt (1 ML). We find that oxygen prefers to bind in bridge sites at the step edge at coverages up to 0.2 ML, but at higher coverages oxygen atoms actually experience mild, localized attractions such that both bridge and threefold hollow sites are occupied to form square planar, fourfold-coordinated PtO4-like structures. These structures progressively dominate the surface with increasing coverage up to 0.8 ML, at which point every kink Pt is saturated with four oxygens. We compute stability regions for these ground states with respect to gas-phase O2 and to NO/NO2 mixtures. The ground state structures at 0.2, 0.6, and 0.8 ML dominate over a wide range of conditions, with the 0.6 ML structure being most prominent. We also explore site preferences for molecular O2 adsorbed on key O ground state structures. Calculations of vibrational modes and core electron binding energy shifts allow us to relate both ground state and non-equilibrium structures to experimental HREELS and XPS results. We show that adsorption sites are primarily characterized by their surface coordination, such that O in atop, bridge, and threefold hollow sites possess distinct and identifiable vibrational modes and core level shifts. However, within these broad categories, we find variability due to interactions with proximal adsorbates. Adsorption energies and vibrational modes of O2 are found to be particularly sensitive to the local adsorption environment. Lastly, we develop a one-dimensional adsorption model to understand and rationalize experimentally observed non-equilibrium behavior at low coverages.

Keywords

Pt(321) Oxygen adsorption Coverage effects Vibrational spectroscopy Cluster expansion DFT 

Supplementary material

11244_2013_165_MOESM1_ESM.pdf (209 kb)
Supplementary material 1 (PDF 210 kb)

References

  1. 1.
    Over H (2012). Chem Rev 112(6):3356CrossRefGoogle Scholar
  2. 2.
    Gland JL (1980). Surf Sci 93(2–3):487CrossRefGoogle Scholar
  3. 3.
    Gland J, Sexton B, Fisher G (1980). Surf Sci 95(2–3):587CrossRefGoogle Scholar
  4. 4.
    Saliba N, Tsai Y, Panja C, Koel B (1999). Surf Sci 419(2–3):79CrossRefGoogle Scholar
  5. 5.
    Yeo Y, Vattuone L, King D (1997). J Chem Phys 106(1):392CrossRefGoogle Scholar
  6. 6.
    McClellan MR, McFeely FR, Gland JL (1983). Surf Sci 124(1):188CrossRefGoogle Scholar
  7. 7.
    Parker D, Bartram M, Koel B (1989). Surf Sci 217(3):489CrossRefGoogle Scholar
  8. 8.
    Smeltz AD, Delgass WN, Ribeiro FH (2010). Langmuir 26(21):16578CrossRefGoogle Scholar
  9. 9.
    Wu C, Schmidt D, Wolverton C, Schneider WF (2012). J Catal 286(0):88CrossRefGoogle Scholar
  10. 10.
    Devarajan SP, Hinojosa JA, Jr, Weaver JF (2008). Surf Sci 602(19):3116CrossRefGoogle Scholar
  11. 11.
    Weaver JF, Kan HH, Shumbera RB (2008). J Phys Condens Mater 20(18):184015Google Scholar
  12. 12.
    Hawkins JM, Weaver JF, Asthagiri A (2009). Phys Rev B 79(12):125434CrossRefGoogle Scholar
  13. 13.
    Miller DJ, Öberg H, Kaya S, Sanchez H, Casalongue, Friebel D, Anniyev T, Ogasawara H, Bluhm H, Pettersson LGM, Nilsson A (2011). Phys Rev Lett 107:195502CrossRefGoogle Scholar
  14. 14.
    Gland JL, McClellan MR, McFeely FR (1983). J Chem Phys 79(12):6349CrossRefGoogle Scholar
  15. 15.
    McClellan MR, Gland JL, McFeeley FR (1981). Surf Sci 112(1–2):63CrossRefGoogle Scholar
  16. 16.
    Wang H, Tobin R, Lambert D, DiMaggio C, Fisher G (1997). Surf Sci 372(1–3):267CrossRefGoogle Scholar
  17. 17.
    Bray JM, Schneider WF (2011). Langmuir 27(13):8177CrossRefGoogle Scholar
  18. 18.
    Hammer B, Nielsen O, Nørskov J (1997). Catal Lett 46(1–2):31CrossRefGoogle Scholar
  19. 19.
    Jiang T, Mowbray DJ, Dobrin S, Falsig H, Hvolbaek B, Bligaard T, Nørskov JK (2009). J Phys Chem C 113(24):10548CrossRefGoogle Scholar
  20. 20.
    Fajín JLC, Cordeiro MNDS, Gomes JRB (2008). J Phys Chem C 112(44):17291CrossRefGoogle Scholar
  21. 21.
    Fajín JLC, Cordeiro MNDS, Gomes JRB (2009). J Phys Chem C 113(20):8864CrossRefGoogle Scholar
  22. 22.
    Fajín JLC, Cordeiro MNDS, Comes JRB (2010). J Mol Struc Theochem 946(1–3, Sp. Iss. SI):51Google Scholar
  23. 23.
    Fajín JLC, Cordeiro MNDS, Illas F, Gomes JRB (2009). J Catal 268(1):131CrossRefGoogle Scholar
  24. 24.
    Fajín JLC, Cordeiro MNDS, Gomes JRB (2007). J Phys Chem C 111:17311CrossRefGoogle Scholar
  25. 25.
    Fajín JLC, Cordeiro MNDS, Gomes JRB (2008). Surf Sci 602(2):424CrossRefGoogle Scholar
  26. 26.
    Stampfl C, Kreuzer HJ, Payne SH, Pfnür H, Scheffler M (1999). Phys Rev Lett 83(15):2993CrossRefGoogle Scholar
  27. 27.
    Sluiter MHF, Kawazoe Y (2003). Phys Rev B 68(8):085410Google Scholar
  28. 28.
    Tang H, van der Ven A, Trout BL (2004). Mol Phys 102(3):273CrossRefGoogle Scholar
  29. 29.
    Han BC, Van der Ven A, Ceder G, Hwang BJ (2005). Phys Rev B 72(20):205409CrossRefGoogle Scholar
  30. 30.
    Blum V, Hart G, Walorski M, Zunger A (2005). Phys Rev B 72(16):165113CrossRefGoogle Scholar
  31. 31.
    Hart G, Blum V, Walorski M, Zunger A (2005). Nat Mater 4(5):391CrossRefGoogle Scholar
  32. 32.
    Müller S, Stöhr M, Wieckhorst O (2006). Appl Phys A Mater Sci Proc 82(3):415CrossRefGoogle Scholar
  33. 33.
    Lerch D, Wieckhorst O, Hammer L, Heinz K, Müller S (2008). Phys Rev B 78:121405CrossRefGoogle Scholar
  34. 34.
    Stöhr M, Podloucky R, Müller S (2009). J Phys Condens Mater 21(13):134017CrossRefGoogle Scholar
  35. 35.
    Lazo C, Keil FJ (2009). Phys Rev B 79:245418CrossRefGoogle Scholar
  36. 36.
    Miller SD, Kitchin JR (2009). Mol Simula 35(10–11):920CrossRefGoogle Scholar
  37. 37.
    Seko A, Koyama Y, Tanaka I (2009). Phys Rev B 80(16):165122Google Scholar
  38. 38.
    Bray JM, Schneider WF (2013) In: Janik M, Asthagiri A (eds) Computational catalysis. Royal Society of Chemistry, LondonGoogle Scholar
  39. 39.
    Schmidt DJ, Chen W, Wolverton C, Schneider WF (2012). J Chem Theory Comput 8(1):264CrossRefGoogle Scholar
  40. 40.
    Perdew JP, Wang Y (1992). Phys Rev B 45(23):13244CrossRefGoogle Scholar
  41. 41.
    Blöchl PE (1994). Phys Rev B 50(24):17953CrossRefGoogle Scholar
  42. 42.
    Getman RB, Schneider WF (2007). J Phys Chem C 111(1):389CrossRefGoogle Scholar
  43. 43.
    van de Walle A, Ceder G (2002). J Phase Equilib 23(4):348CrossRefGoogle Scholar
  44. 44.
    van de Walle A, Asta M, Ceder G (2002). Calphad 26(4):539CrossRefGoogle Scholar
  45. 45.
    van de Walle A, Asta M (2002). Model Simul Mater Sci 10(5):521CrossRefGoogle Scholar
  46. 46.
    van de Walle A (2009). Calphad 33(2):266CrossRefGoogle Scholar
  47. 47.
    Wilson EB, Decius JC, Cross PC (1955) In: Molecular vibrations: the theory of infrared and Raman vibrational spectra, McGraw-Hill, New YorkGoogle Scholar
  48. 48.
    Morin C, Simon D, Sautet P (2003). J Phys Chem B 107(13):2995CrossRefGoogle Scholar
  49. 49.
    Singnurkar P, Bako I, Koch HP, Demirci E, Winkler A, Schennach R (2008). J Phys Chem C 112(36):14034CrossRefGoogle Scholar
  50. 50.
    Martorell B, Clotet A, Fraxedas J, Clotet A, Fraxedas J (2010). J Comput Chem 31(9):1842Google Scholar
  51. 51.
    Lizzit S, Baraldi A, Groso A, Reuter K, Ganduglia-Pirovano MV, Stampfl C, Scheffler M, Stichler M, Keller C, Wurth W, Menzel D (2001). Phys Rev B 63(20):205419CrossRefGoogle Scholar
  52. 52.
    L. Kohler, G. Kresse (2004). Phys Rev B 70(16):165405CrossRefGoogle Scholar
  53. 53.
    Olovsson W, Göransson C, Pourovskii L, Johansson B, Abrikosov I (2005). Phys Rev B 2(6):064203CrossRefGoogle Scholar
  54. 54.
    Olovsson W, Göransson C, Marten T, Abrikosov IA (2006). Phys Status Solidi B 243(11):2447CrossRefGoogle Scholar
  55. 55.
    Stierle A, Tieg C, Dosch H, Formoso V, Lundgren E, Andersen J, Kohler L, Kresse G (2003). Surf Sci 529(3):L263CrossRefGoogle Scholar
  56. 56.
    Zeng ZH, Da Silva JLF, Deng HQ, Li WX (2009). Phys Rev B 79(20):205413CrossRefGoogle Scholar
  57. 57.
    Zeng ZH, Ma XF, Ding WC, Li WX (2010) Sci China Chem 53(2, Sp. Iss. SI):402CrossRefGoogle Scholar
  58. 58.
    Feibelman P, Esch S, Michely T (1996). Phys Rev Lett 77(11):2257CrossRefGoogle Scholar
  59. 59.
    Wang J, Li W, Borg M, Gustafson J, Mikkelsen A, Pedersen T, Lundgren E, Weissenrieder J, Klikovits J, Schmid M, Hammer B, Andersen J (2005). Phys Rev Lett 95(25):256102CrossRefGoogle Scholar
  60. 60.
    Bandlow J, Kaghazchi P, Jacob T, Papp C, Traenkenschuh B, Streber R, Lorenz MPA, Fuhrmann T, Denecke R, Steinrueck HP (2011). Phys Rev B 83(17):174107CrossRefGoogle Scholar
  61. 61.
    Xu Y, Shelton WA, Schneider WF (2006). J Phys Chem A 110(17):5839CrossRefGoogle Scholar
  62. 62.
    Xu Y, Shelton WA, Schneider WF (2006). J Phys Chem B 110(33):16591CrossRefGoogle Scholar
  63. 63.
    Getman RB, Xu Y, Schneider WF (2008). J Phys Chem C 112(26):9559CrossRefGoogle Scholar
  64. 64.
    K. Reuter, C. Stampfl, M. Scheffler (2005) In: S. Yip (ed) Handbook of materials modeling, vol. 1: fundamental models and methods. Springer, The NetherlandsGoogle Scholar
  65. 65.
    Bollinger MV, Jacobsen KW, Nørskov JK (2003). Phys Rev B 67(8):085410CrossRefGoogle Scholar
  66. 66.
    Steininger H, Lehwald S, Ibach H (1982). Surf Sci 123(1):1CrossRefGoogle Scholar
  67. 67.
    Eichler A, Hafner J (1997). Phys Rev Lett 79(22):4481CrossRefGoogle Scholar
  68. 68.
    Wang XG, Fisher GB (2007). Phys Rev Lett 99(6):066101CrossRefGoogle Scholar
  69. 69.
    McEwen JS, Bray JM, Wu C, Schneider WF (2012) Phys Chem Chem Phys 14:16677CrossRefGoogle Scholar
  70. 70.
    Feibelman P, Hafner J, Kresse G (1998). Phys Rev B 58(4):2179CrossRefGoogle Scholar
  71. 71.
    Avery N (1983). Chem Phys Lett 96(3):371CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of Notre DameNotre DameUSA
  2. 2.Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameUSA

Personalised recommendations