Topics in Catalysis

, Volume 57, Issue 1–4, pp 54–68 | Cite as

Atomic and Molecular Adsorption on Re(0001)

Original Paper


Using periodic, self-consistent density functional theory calculations, the adsorption of several atomic (H, S, N, O and C) and molecular (CO2, N2, NH3, HCN, CO and NO) species and molecular fragments (NH2, NH, CN, CNH2, HNO, NOH, CH3, CH2, CH and OH) on the (0001) facet of rhenium at a coverage of 0.25 ML has been studied. Preferred binding sites with their corresponding binding energy and deformation energy of the surface, as well as an estimated diffusion barrier of each species have been determined. Atomic species and molecular fragments tend to bind to threefold sites, whereas molecular species tend to bind to top sites. The binding strength, with respect to the corresponding gas phase species and in increasing order for all species studied, is: CO2 < N2 < NH3 < CO < CH3 < HCN < NO < H < NH2 < OH < CH2 < CNH2 < CN < HNO < NH < NOH < S < N < O < CH < C. The vibrational frequencies of all species in their most energetically favorable adsorbed configuration have been calculated. Finally, the thermochemistry of adsorption and decomposition of NO, NO + H, NH3, N2, CO2, CO and CH4 on Re(0001) has been analyzed.


Density functional theory Rhenium Catalysis Adsorption Binding energies Vibrational frequencies 



Both authors want to congratulate Prof. Jens K. Nørskov on the occasion of his 60th birthday. They have tremendously benefited from his inspiring work in heterogeneous catalysis so far and wish him the very best for the future. Work at UW-Madison was supported by DOE-BES, Office of Chemical Sciences. KRH acknowledges partial support from DAAD. We thank Prof. Lars C. Grabow and Jeff Herron for helpful discussions and careful reading of the manuscript and Lang Xu for carrying out some of the calculations of this work. Computational work was performed in part using supercomputing resources from the following institutions: EMSL, a National scientific user facility at Pacific Northwest National Laboratory (PNNL); the Center for Nanoscale Materials at Argonne National Laboratory (ANL); and the National Energy Research Scientific Computing Center (NERSC). EMSL is sponsored by the Department of Energy’s Office of Biological and Environmental Research located at PNNL. CNM, and NERSC are supported by the U.S. Department of Energy, Office of Science, under contracts DE-AC02-06CH11357 and DE-AC02-05CH11231, respectively.


  1. 1.
    Bartolacini RJ, Kim DK (1971) Reforming petroleum hydrocarbon with catalysts promoted with gallium and rhenium. US 3,772,184, 13 Nov 1973Google Scholar
  2. 2.
    Mahoney JA, Hensley Jr. AL (1975) Reforming with platinum-rhenium-selenium catalysts. US 3,884,799, 20 May 1975Google Scholar
  3. 3.
    Pallassana V, Neurock M (2002) J Catal 209(2):289–305CrossRefGoogle Scholar
  4. 4.
    Chia M, Pagan-Torres YJ, Hibbitts D, Tan QH, Pham HN, Datye AK, Neurock M, Davis RJ, Dumesic JA (2011) J Am Chem Soc 133(32):12675–12689CrossRefGoogle Scholar
  5. 5.
    Guo JJ, Lou H, Zhao H, Zheng LH, Zheng XM (2005) J Mol Catal A Chem 239(1–2):222–227CrossRefGoogle Scholar
  6. 6.
    Viswanadham N, Kamble R, Sharma A, Kumar M, Saxena AK (2008) J Mol Catal A Chem 282(1–2):74–79CrossRefGoogle Scholar
  7. 7.
    Wang LS, Ohnishi R, Ichikawa M (2000) J Catal 190(2):276–283CrossRefGoogle Scholar
  8. 8.
    Bogdan PL (2001) Naphtha upgrading by combined olefin forming and aromatization. US 6,190,534, 20 Feb 2001Google Scholar
  9. 9.
    Kuninobu Y, Nishina Y, Takai K (2007) Tetrahedron 63(35):8463–8468CrossRefGoogle Scholar
  10. 10.
    Kuninobu Y, Nishina Y, Shoitho M, Takai K (2006) Angew Chem Int Ed 45(17):2766–2768CrossRefGoogle Scholar
  11. 11.
    Yudha SS, Kuninobu Y, Takai K (2007) Org Lett 9(26):5609–5611CrossRefGoogle Scholar
  12. 12.
    Mol JC (1999) Catal Today 51(2):289–299CrossRefGoogle Scholar
  13. 13.
    Lacheen HS, Cordeiro PJ, Iglesia E (2007) Chem Eur J 13(11):3048–3057CrossRefGoogle Scholar
  14. 14.
    Shum VK, Butt JB, Sachtler WMH (1985) J Catal 96(2):371–380CrossRefGoogle Scholar
  15. 15.
    Kelly DG, Gellman AJ, Salmeron M, Somorjai GA, Maurice V, Huber M, Oudar J (1988) Surf Sci 204(1–2):1–25CrossRefGoogle Scholar
  16. 16.
    Asscher M, Somorjai GA (1984) Surf Sci 143(1):L389–L392CrossRefGoogle Scholar
  17. 17.
    Wachs IE, Deo G, Andreini A, Vuurman MA, de Boer M (1996) J Catal 160(2):322–325CrossRefGoogle Scholar
  18. 18.
    Espenson JH (2005) Coordin Chem Rev 249(3–4):329–341CrossRefGoogle Scholar
  19. 19.
    Ibdah A, Jenks WS, Espenson JH (2006) Inorg Chem 45(14):5351–5357CrossRefGoogle Scholar
  20. 20.
    Peled H, Asscher M (1987) Surf Sci 183(1–2):201–215CrossRefGoogle Scholar
  21. 21.
    Godbey DJ, Somorjai GA (1988) Surf Sci 204(3):301–318CrossRefGoogle Scholar
  22. 22.
    Dunphy JC, Sautet P, Ogletree DF, Dabbousi O, Salmeron MB (1993) Phys Rev B 47(4):2320–2328CrossRefGoogle Scholar
  23. 23.
    Barbieri A, Jentz D, Materer N, Held G, Dunphy J, Ogletree DF, Sautet P, Salmeron M, Vanhove MA, Somorjai GA (1994) Surf Sci 312(1–2):10–20CrossRefGoogle Scholar
  24. 24.
    He JW, Goodman DW (1990) J Phys Chem 94(4):1502–1508CrossRefGoogle Scholar
  25. 25.
    He JW, Goodman DW (1989) Surf Sci 218(1):211–222CrossRefGoogle Scholar
  26. 26.
    Ducros R, Alnot M, Ehrhardt JJ, Housley M, Piquard G, Cassuto A (1980) Surf Sci 94(1):154–168CrossRefGoogle Scholar
  27. 27.
    Ducros R, Housley M, Piquard G, Alnot M (1981) Surf Sci 108(2):235–252CrossRefGoogle Scholar
  28. 28.
    Housley M, Ducros R, Piquard G, Cassuto A (1977) Surf Sci 68:277–284CrossRefGoogle Scholar
  29. 29.
    Zaera F, Somorjai GA (1985) Surf Sci 154(1):303–314CrossRefGoogle Scholar
  30. 30.
    Tatarenko S, Alnot M, Ducros R (1985) Surf Sci 163(1):249–265CrossRefGoogle Scholar
  31. 31.
    Pallassana V, Neurock M, Hansen LB, Hammer B, Nørskov JK (1999) Phys Rev B 60(8):6146–6154CrossRefGoogle Scholar
  32. 32.
    Döll R, Hammer L, Heinz K, Bedürftig K, Muschiol U, Christmann K, Seitsonen AP, Bludau H, Over H (1998) J Chem Phys 108(20):8671–8679CrossRefGoogle Scholar
  33. 33.
    Abild-Pedersen F, Andersson MP (2007) Surf Sci 601(7):1747–1753CrossRefGoogle Scholar
  34. 34.
    Hummelshøj JS, Abild-Pedersen F, Studt F, Bligaard T, Nørskov JK (2012) Angew Chem Int Ed 51(1):272–274CrossRefGoogle Scholar
  35. 35.
    Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59(11):7413–7421CrossRefGoogle Scholar
  36. 36.
    Greeley J, Nørskov JK, Mavrikakis M (2002) Annu Rev Phys Chem 53:319–348CrossRefGoogle Scholar
  37. 37.
    Neugebauer J, Scheffler M (1992) Phys Rev B 46(24):16067–16080CrossRefGoogle Scholar
  38. 38.
    Vanderbilt D (1990) Phys Rev B 41(11):7892–7895CrossRefGoogle Scholar
  39. 39.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46(11):6671–6687CrossRefGoogle Scholar
  40. 40.
    Kresse G, Furthmuller J (1996) Comput Mater Sci 6(1):15–50CrossRefGoogle Scholar
  41. 41.
    Korolkov I, Zadesenets A, Gromilov S, Yusenko K, Baidina I, Korenev S (2006) J Struct Chem 47(3):489–498CrossRefGoogle Scholar
  42. 42.
    Johnson RD (ed) (2004) NIST Standard Reference Database Number 101. In NIST Computational chemistry comparison and benchmark database.
  43. 43.
    Greeley J, Mavrikakis M (2003) Surf Sci 540(2–3):215–229CrossRefGoogle Scholar
  44. 44.
    Ford DC, Xu Y, Mavrikakis M (2005) Surf Sci 587(3):159–174CrossRefGoogle Scholar
  45. 45.
    Krekelberg WP, Greeley J, Mavrikakis M (2004) J Phys Chem B 108(3):987–994CrossRefGoogle Scholar
  46. 46.
    Mavrikakis M, Rempel J, Greeley J, Hansen LB, Nørskov JK (2002) J Chem Phys 117(14):6737–6744CrossRefGoogle Scholar
  47. 47.
    Herron JA, Tonelli S, Mavrikakis M (2012) Surf Sci 606(21–22):1670–1679CrossRefGoogle Scholar
  48. 48.
    Gland JL, Sexton BA, Fisher GB (1980) Surf Sci 95(2–3):587–602CrossRefGoogle Scholar
  49. 49.
    Nilekar AU, Greeley J, Mavrikakis M (2006) Angew Chem Int Ed 45(42):7046–7049CrossRefGoogle Scholar
  50. 50.
    Asscher M, Kao CT, Somorjai GA (1988) J Phys Chem 92(10):2711–2714CrossRefGoogle Scholar
  51. 51.
    Liu W, Carrasco J, Santra B, Michaelides A, Scheffler M, Tkatchenko A (2012) Phys Rev B 86:245405CrossRefGoogle Scholar
  52. 52.
    Grimme S (2006) J Comput Chem 27(15):1787–1799CrossRefGoogle Scholar
  53. 53.
    Wellendorff J, Lundgaard KT, Mogelhoj A, Petzold V, Landis DD, Norskov JK, Bligaard T, Jacobsen KW (2012) Phys Rev B 85(23):235149CrossRefGoogle Scholar
  54. 54.
    Braun W, Meyer-Ehmsen G, Neumann M, Schwarz E (1979) Surf Sci 89(1–3):354–360CrossRefGoogle Scholar
  55. 55.
    Ducros R, Tardy B, Bertolini JC (1983) Surf Sci 128(2–3):L219–L223Google Scholar
  56. 56.
    Rosenzweig Z, Asscher M (1990) Surf Sci 225(3):249–259CrossRefGoogle Scholar
  57. 57.
    Kim TW, Weiss MJ, Hagedorn CJ, Weinberg WH (2001) J Vac Sci Technol A 19(6):2941–2945CrossRefGoogle Scholar
  58. 58.
    Zemlyanov DY, Smirnov MY, Gorodetskii VV, Block JH (1995) Surf Sci 329(1–2):61–70CrossRefGoogle Scholar
  59. 59.
    Solymosi F, Zakar TS (2005) J Mol Catal A 235(1–2):260–266CrossRefGoogle Scholar
  60. 60.
    Ertl G (1980) Catal Rev 21(2):201–223CrossRefGoogle Scholar
  61. 61.
    Por E, Haase G, Citri O, Kosloff R, Asscher M (1991) Chem Phys Lett 186(6):553–560CrossRefGoogle Scholar
  62. 62.
    Wang S-G, Liao X-Y, Cao D-B, Huo C-F, Li Y-W, Wang J, Jiao H (2007) Met Surf 111:16934–16940Google Scholar
  63. 63.
    Freund H-J, Roberts MW (1996) Surf Sci Rep 25:225–273CrossRefGoogle Scholar
  64. 64.
    Alnot M, Weber B, Ehrhardt JJ, Cassuto A (1979) Appl Surf Sci 2(4):578–613CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Chemical & Biological EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations