Advertisement

Topics in Catalysis

, Volume 57, Issue 1–4, pp 33–39 | Cite as

Genetic Algorithm Procreation Operators for Alloy Nanoparticle Catalysts

  • Steen Lysgaard
  • David D. Landis
  • Thomas Bligaard
  • Tejs Vegge
Original Paper

Abstract

The long-term stability of binary nanoparticles and clusters is one of the main challenges in the development of novel (electro-)catalysts for e.g. CO2 reduction. Here, we present a method for predicting the optimal composition and structure of alloy nanoparticles and clusters, with particular focus on the surface properties. Based on a genetic algorithm (GA) we introduce and discuss efficient permutation operations that work by interchanging positions of elements depending on their local environment and position in the cluster. We discuss the fact that in order to be efficient, the operators have to be dynamic, i.e. change their behavior during the course of an algorithm run. The implementation of the GA including the customized operators is freely available at http://svn.fysik.dtu.dk/projects/pga.

Keywords

Nanoparticle catalysts Genetic algorithms Cu–Ni Copper–Nickel 

References

  1. 1.
    Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115(2):301. doi: 10.1016/0021-9517(89)90034-1 Google Scholar
  2. 2.
    Kleis J, Greeley J, Romero NA, Morozov VA, Falsig H, Larsen AH, Lu J, Mortensen JJ, Duak M, Thygesen KS, Nørskov JK, Jacobsen KW (2011) Catal Lett 141(8):1067. doi: 10.1007/s10562-011-0632-0 CrossRefGoogle Scholar
  3. 3.
    Peterson AA, Grabow LC, Brennan TP, Shong B, Ooi C, Wu DM, Li CW, Kushwaha A, Medford AJ, Mbuga F, Li L, Nørskov JK (2012) Top Catal 55(19–20):1276. doi: 10.1007/s11244-012-9908-x CrossRefGoogle Scholar
  4. 4.
    Cuenya BR (2010) Thin Solid Films 518(12):3127. doi: 10.1016/j.tsf.2010.01.018
  5. 5.
    Ahmed J, Ramanujachary KV, Lofland SE, Furiato A, Gupta G, Shivaprasad S, Ganguli AK (2008) Colloids Surf A 331(3):206. doi: 10.1016/j.colsurfa.2008.08.007 Google Scholar
  6. 6.
    Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Nørskov JK (2009) Nat Chem 1(7):552. doi: 10.1038/nchem.367
  7. 7.
    Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C, Liu Z, Kaya S, Nordlund D, Ogasawara H, Toney MF, Nilsson A (2010) Nat Chem 2(6):454. doi: 10.1038/nchem.623 Google Scholar
  8. 8.
    Christophe J, Doneux T, Buess-Herman C (2012) Electrocatalysis 3(2):139. doi: 10.1007/s12678-012-0095-0
  9. 9.
    Studt F, Abild-Pedersen F, Wu Q, Jensen AD, Temel B, Grunwaldt JD, Nørskov JK (2012) J Catal 293:51. doi: 10.1016/j.jcat.2012.06.004
  10. 10.
    Hohenberg P, Kohn W (1964) Phys Rev B 136(3B):B864. doi: 10.1103/PhysRev.136.B864
  11. 11.
    Kohn W, Sham L (1965) Phys Rev 140(4A):1133Google Scholar
  12. 12.
    Sørensen MR, Voter AF (2000) J Chem Phys 112(21):9599. doi: 10.1063/1.481576 Google Scholar
  13. 13.
    Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Science 220(4598):671. doi: 10.1126/science.220.4598.671 Google Scholar
  14. 14.
    Chen G, Delafuente DA, Sarangapani S, Mallouk TE (2001) Catal Today 67(4):341. doi: 10.1016/S0920-5861(01)00327-3 Google Scholar
  15. 15.
    Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann ArborGoogle Scholar
  16. 16.
    Hartke B (1993) J Phys Chem 97(39):9973. doi: 10.1021/j100141a013 CrossRefGoogle Scholar
  17. 17.
    Zeiri Y (1995) Phys Rev E 51(4):R2769. doi: 10.1103/PhysRevE.51.R2769
  18. 18.
    Deaven DM, Ho KM (1995) Phys Rev Lett 75(2):288CrossRefGoogle Scholar
  19. 19.
    Barron C, Gomez S, Romero D, Saavedra A (1999) Appl Math Lett 12:85Google Scholar
  20. 20.
    Johnston R (2003) Dalton Trans 4193–4207. doi: 10.1039/B305686D
  21. 21.
    Hartke B (2004) Struct Bonding 110:33. doi: 10.1007/b13932
  22. 22.
    Dugan N, Erkoç S (2009) Algorithms 2(1):410. doi: 10.3390/a2010410
  23. 23.
    Mainardi DS, Balbuena PB (2001) Langmuir 17(6):2047. doi: 10.1021/la0014306
  24. 24.
    Montejano-Carrizales J, Iñiguez M, Alonso J (1994) Phys Rev B 49(23):16649. doi: 10.1103/PhysRevB.49.16649 Google Scholar
  25. 25.
    Hristova E, Dong Y, Grigoryan VG, Springborg M (2008) J Phys Chem A 112(34):7905. doi: 10.1021/jp801837d Google Scholar
  26. 26.
    Montejano-Carrizales J, Moran-Lopez J (1992) Nanostruct Mater 1(5):397. doi: 10.1016/0965-9773(92)90090-K CrossRefGoogle Scholar
  27. 27.
    Jellinek J, Krissinel EB (1996) Chem Phys Lett 4:283Google Scholar
  28. 28.
    Landis DD, Hummelshøj JS, Nestorov S, Greeley J, Dulak M,Bligaard T, Nørskov JK, Jacobsen KW (2012) Comput Sci Eng. doi: 10.1109/MCSE.2012.16
  29. 29.
    Bahn SR, Jacobsen KW (2002) Comput Sci Eng 4(3):56. doi: 10.1109/5992.998641 CrossRefGoogle Scholar
  30. 30.
    Reeves CR (2010) Handbook of Metaheuristics, International Series in Operations Research & Management Science vol. 146. Springer, Boston. doi: 10.1007/978-1-4419-1665-5
  31. 31.
    De Jong KA (1975) An analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis, University of MichiganGoogle Scholar
  32. 32.
    Molenbroek AM, Haukka S, Clausen BS (1998) J Phys Chem B 102:10680. doi: 10.1021/jp9822081 Google Scholar
  33. 33.
    Jacobsen KW, Nørskov JK, Puska M (1987) Physl Rev B 35(14):7423. doi: 10.1103/PhysRevB.35.7423 Google Scholar
  34. 34.
    Jacobsen KW, Stoltze P, Nørskov JK (1996) Surf Sci 366(2):394. doi: 10.1016/0039-6028(96)00816-3 Google Scholar
  35. 35.
    Vegge T, Rasmussen T, Leffers T, Pedersen OB, Jacobsen KW (2001) Philos Mag Lett 81(3):137. doi: 10.1080/09500830010019040 CrossRefGoogle Scholar
  36. 36.
    Vegge T (2001) Mater Sci Eng A 309310(0):113. doi: 10.1016/S0921-5093(00)01624-5
  37. 37.
    Vegge T, Jacobsen KW (2002) J Phys 14(11):2929. doi: 10.1088/0953-8984/14/11/309 Google Scholar
  38. 38.
    Mortensen JJ, Hansen LB, Jacobsen KW (2005) Phys Rev B 71:35109CrossRefGoogle Scholar
  39. 39.
    Enkovaara J, Rostgaard C, Mortensen JJ, Chen J, Dulak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen HA, Kristoffersen HH, Kuisma M, Larsen AH, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses PG, Ojanen J, Olsen T, Petzold V, Romero NA, Stausholm-Moller J, Strange M, Tritsaris GA, Vanin M, Walter M, Hammer B, Hakkinen H, Madsen GKH, Nieminen RM, Nørskov JK, Puska M, Rantala TT, Schiøtz J, Thygesen KS, Jacobsen KW (2010) J Phys 22(25). doi: 10.1088/0953-8984/22/25/253202
  40. 40.
    Blöchl P (1994) Phys Rev B 50(24):17953CrossRefGoogle Scholar
  41. 41.
    Larsen AH, Vanin M, Mortensen JJ, Thygesen KS, Jacobsen KW (2009) Phys Rev B 80(19):195112. doi: 10.1103/PhysRevB.80.195112 CrossRefGoogle Scholar
  42. 42.
    Hammer B, Hansen L, Nørskov J (1999) Phys Rev B 59(11):7413. doi: 10.1103/PhysRevB.59.7413 Google Scholar
  43. 43.
    Mackay AL (1962) Acta Crystallogr 15(9):916. doi: 10.1107/S0365110X6200239X Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Steen Lysgaard
    • 1
  • David D. Landis
    • 2
  • Thomas Bligaard
    • 3
  • Tejs Vegge
    • 1
  1. 1.Department of Energy Conversion and StorageTechnical University of DenmarkRoskildeDenmark
  2. 2.Center for Atomic-scale Materials Design, Department of PhysicsTechnical University of DenmarkLyngbyDenmark
  3. 3.SUNCAT Center for Interface Science & CatalysisSLAC National Accelerator LaboratoryMenlo ParkUSA

Personalised recommendations