Topics in Catalysis

, Volume 56, Issue 15–17, pp 1512–1524 | Cite as

Direct Formation of Acetate from the Partial Oxidation of Ethylene on a Au/TiO2 Catalyst

  • Isabel Xiaoye Green
  • Monica McEntee
  • Wenjie Tang
  • Matthew Neurock
  • John T. YatesJr.Email author
Original Paper


The partial oxidation of ethylene to form adsorbed acetate on a Au/TiO2 catalyst at temperatures as low as 370 K is reported here using Fourier transform infrared (FTIR) spectroscopy, gas chromatography-mass spectrometry (GC–MS) and density functional theory (DFT) calculations. Ethylene reacts with oxygen on Au/TiO2 to produce acetate on the TiO2 support as determined by the comparison with a blank TiO2 and Au/SiO2 catalyst. As shown by DFT calculations, O2 dissociation occurs at the dual-perimeter Au–Ti4+ sites of Au/TiO2 catalysts. Surprising, no ethylene oxide on the catalyst surface or in the gas phase is detected by either FTIR or GC–MS techniques at temperatures up to 673 K. The reaction pathway to ethylene oxide involves a higher barrier (~1.0–1.5 eV) than the pathway for acetate formation (~0.1–0.6 eV). The rate-limiting step to form adsorbed acetate was found to be the protonation of the H2C*C(OH)O* intermediate to produce the bound acetic acid. The theoretical initial deuterium kinetic isotope effect is ~3 which is consistent with the experimental data.

Graphical Abstract


Acetate Deuterium kinetic isotope effect Dual catalytic sites Au/TiO2 Density functional theory Ethylene oxide 



We gratefully thank the DOE-Office of Basic Energy Sciences under grant number DE-FG02-09ER16080, as well as the XSEDE computing resources from Texas Advanced Computing Center and San Diego Supercomputer Center. We appreciate the generosity of Professor R. Zanella from UNAM who provided us the Au/SiO2 sample. We also acknowledge two fellowships for Isabel Green and Monica McEntee from AES Corporation through the AES Graduate Fellowships in Energy Research Program at the University of Virginia.

Supplementary material

11244_2013_154_MOESM1_ESM.docx (562 kb)
Supplementary material 1 (DOCX 562 kb)


  1. 1.
    Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281(5383):1647–1650CrossRefGoogle Scholar
  2. 2.
    Green IX, Tang W, Neurock M, Yates JT Jr (2011) Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 333(6043):736–739. doi: 10.1126/science.1207272 CrossRefGoogle Scholar
  3. 3.
    Green IX, Tang W, McEntee M, Neurock M, Yates JT Jr (2012) Inhibition at Perimeter Sites of Au/TiO2 oxidation catalyst by reactant oxygen. J Am Chem Soc 134(30):12717–12723. doi: 10.1021/ja304426b CrossRefGoogle Scholar
  4. 4.
    Green IX, Tang W, Neurock M, Yates JT Jr (2011) Low-temperature catalytic H2 oxidation over Au nanoparticle/TiO2 dual perimeter sites. Angew Chem Int Ed 50(43):10186–10189. doi: 10.1002/anie.201101612 CrossRefGoogle Scholar
  5. 5.
    Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) Low-temperature oxidation of Co over gold supported on TiO2, alpha-Fe2O3, and CO3O4. J Catal 144(1):175–192CrossRefGoogle Scholar
  6. 6.
    Fujitani T, Nakamura I, Akita T, Okumura M, Haruta M (2009) Hydrogen dissociation by gold clusters. Angew Chem Int Ed 48(50):9515–9518. doi: 10.1002/Anie.200905380 CrossRefGoogle Scholar
  7. 7.
    Chen MS, Goodman DW (2004) The structure of catalytically active gold on titania. Science 306(5694):252–255. doi: 10.1126/Science.1102420 CrossRefGoogle Scholar
  8. 8.
    Rodriguez JA, Ma S, Liu P, Hrbek J, Evans J, Pérez M (2007) Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction. Science 318(5857):1757–1760. doi: 10.1126/science.1150038 CrossRefGoogle Scholar
  9. 9.
    Kung MC, Davis RJ, Kung HH (2007) Understanding Au-catalyzed low-temperature CO oxidation. J Phys Chem C 111(32):11767–11775. doi: 10.1021/Jp072102i CrossRefGoogle Scholar
  10. 10.
    Hammer B, Norskov JK (1995) Why gold is the noblest of all the metals. Nature 376(6537):238–240. doi: 10.1038/376238a0 CrossRefGoogle Scholar
  11. 11.
    Laursen S, Linic S (2009) Geometric and electronic characteristics of active sites on TiO2-supported Au nano-catalysts: insights from first principles. Phys Chem Chem Phys 11(46):11006–11012. doi: 10.1039/B912641d CrossRefGoogle Scholar
  12. 12.
    Kotobuki M, Leppelt R, Hansgen DA, Widmann D, Behm RJ (2009) Reactive oxygen on a Au/TiO2 supported catalyst. J Catal 264(1):67–76. doi: 10.1016/J.Jcat.2009.03.013 CrossRefGoogle Scholar
  13. 13.
    Cheung H, Tanke RS, Torrence GP (2011) Acetic acid. In: Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim. doi: 10.1002/14356007.a01_045.pub2
  14. 14.
    Ki Sano, Uchida H, Wakabayashi S (1999) A new process for acetic acid production by direct oxidation of ethylene. Catal Surv Jpn 3(1):55–60. doi: 10.1023/a:1019003230537 CrossRefGoogle Scholar
  15. 15.
    Chu W, Ooka Y, Kamiya Y, Okuhara T (2005) Reaction path for oxidation of ethylene to acetic acid over Pd/WO3–ZrO2 in the presence of water. Catal Lett 101(3):225–228. doi: 10.1007/s10562-005-4896-0 CrossRefGoogle Scholar
  16. 16.
    Li X, Iglesia E (2008) Support and promoter effects in the selective oxidation of ethane to acetic acid catalyzed by Mo–V–Nb oxides. Appl Catal A 334(1–2):339–347. doi: 10.1016/j.apcata.2007.10.021 CrossRefGoogle Scholar
  17. 17.
    Li X, Iglesia E (2007) Synergistic effects of TiO2 and palladium-based cocatalysts on the selective oxidation of ethene to acetic acid on Mo–V–Nb oxide domains. Angew Chem Int Ed 46(45):8649–8652. doi: 10.1002/anie.200700593 CrossRefGoogle Scholar
  18. 18.
    Force EL, Bell AT (1975) Infrared spectra of adsorbed species present during the oxidation of ethylene over silver. J Catal 38:440–460CrossRefGoogle Scholar
  19. 19.
    Sachtler WMH, Backx C, Santen RAV (1981) On the mechanism of ethylene epoxidation. Catal Rev Sci Eng 23(1&2):127–149CrossRefGoogle Scholar
  20. 20.
    Rojluechai S, Chavadej S, Schwank JW, Meeyoo V (2007) Catalytic activity of ethylene oxidation over Au, Ag and Au–Ag catalysts: support effect. Catal Commun 8(1):57–64. doi: 10.1016/j.catcom.2006.05.029 CrossRefGoogle Scholar
  21. 21.
    Green IX, Tang W, Neurock M, Yates JT Jr (2012) Localized partial oxidation of acetic acid at the dual perimeter sites of the Au/TiO2 catalyst—formation of gold ketenylidene. J Am Chem Soc 134(33):13569–13572. doi: 10.1021/ja305911e CrossRefGoogle Scholar
  22. 22.
    Green IX, Tang W, Neurock M, J. T. Yates J (2013) Mechanistic insights into the partial oxidation of acetic acid by O2 at the dual perimeter sites of a Au/TiO2 catalyst. Faraday Discuss AcceptedGoogle Scholar
  23. 23.
    Basu P, Ballinger TH, Yates JT Jr (1988) Wide temperature-range ir spectroscopy cell for studies of adsorption and desorption on high area solids. Rev Sci Instrum 59(8):1321–1327CrossRefGoogle Scholar
  24. 24.
    Zanella R, Giorgio S, Henry CR, Louis C (2002) Alternative methods for the preparation of gold nanoparticles supported on TiO2. J Phys Chem B 106(31):7634–7642. doi: 10.1021/jp0144810 CrossRefGoogle Scholar
  25. 25.
    Zanella R, Sandoval A, Santiago P, Basiuk VA, Saniger JM (2006) New preparation method of gold nanoparticles on SiO2. J Phys Chem B 110(17):8559–8565. doi: 10.1021/jp060601y CrossRefGoogle Scholar
  26. 26.
    Molina LM, Rasmussen MD, Hammer B (2004) Adsorption of O2 and oxidation of CO at Au nanoparticles supported by TiO2(110). J Chem Phys 120(16):7673–7680. doi: 10.1063/1.1687337 CrossRefGoogle Scholar
  27. 27.
    Kresse G (2000) Dissociation and sticking of H2 On the Ni(111), (100), and (110) substrate. Phy Rev B 62(12):8295–8305CrossRefGoogle Scholar
  28. 28.
    Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation-energy. Phy Rev B 45(23):13244–13249CrossRefGoogle Scholar
  29. 29.
    Blöchl PE (1994) Projector augmented-wave method. Phy Rev B 50(24):17953–17979CrossRefGoogle Scholar
  30. 30.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phy Rev B 59(3):1758–1775CrossRefGoogle Scholar
  31. 31.
    Alon R, Hammer DA, Springer TA (1995) Lifetime of the P-selectin-carbohydrate bond and Its response to tensile force in hydrodynamic flow. Nature 374(6522):539–542. doi: 10.1038/374539a0 CrossRefGoogle Scholar
  32. 32.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phy Rev B 13(12):5188–5192CrossRefGoogle Scholar
  33. 33.
    Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys Rev B 57(3):1505–1509CrossRefGoogle Scholar
  34. 34.
    Morgan BJ, Watson GW (2007) A DFT+U description of oxygen vacancies at the TiO2 rutile (110) surface. Surf Sci 601(21):5034–5041. doi: 10.1016/J.Susc.2007.08.025 CrossRefGoogle Scholar
  35. 35.
    Henkelman G, Jónsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113(22):9978–9985CrossRefGoogle Scholar
  36. 36.
    Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904CrossRefGoogle Scholar
  37. 37.
    Henkelman G, Jónsson H (1999) A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J Chem Phys 111(15):7010–7022CrossRefGoogle Scholar
  38. 38.
    Liao L-F, Lien C-F, Lin J-L (2001) FTIR study of adsorption and photoreactions of acetic acid on TiO2. Phys Chem Chem Phys 3(17):3831–3837CrossRefGoogle Scholar
  39. 39.
    Hasan MA, Zaki MI, Pasupulety L (2003) Oxide-catalyzed conversion of acetic acid into acetone: an FTIR spectroscopic investigation. Appl Catal A 243(1):81–92. doi: 10.1016/s0926-860x(02)00539-2 CrossRefGoogle Scholar
  40. 40.
    Mattsson A, Österlund L (2010) Adsorption and photoinduced decomposition of acetone and acetic acid on anatase, brookite, and rutile TiO2 nanoparticles. J Phys Chem C 114(33):14121–14132. doi: 10.1021/jp103263n CrossRefGoogle Scholar
  41. 41.
    Lien CF, Ho CH, Shieh CY, Tseng CL, Lin JL (2008) FTIR study of adsorption and reactions of ethylene oxide on powdered TiO2. J Phys Chem C 112(22):8365–8371. doi: 10.1021/Jp711700d CrossRefGoogle Scholar
  42. 42.
    Ruiz A, van der Linden B, Makkee M, Mul G (2009) Acrylate and propoxy-groups: contributors to deactivation of Au/TiO2 in the epoxidation of propene. J Catal 266(2):286–290. doi: 10.1016/j.jcat.2009.06.019 CrossRefGoogle Scholar
  43. 43.
    Liu XY, Madix RJ, Friend CM (2008) Unraveling molecular transformations on surfaces: a critical comparison of oxidation reactions on coinage metals. Chem Soc Rev 37(10):2243–2261. doi: 10.1039/b800309m CrossRefGoogle Scholar
  44. 44.
    Liu XY, Friend CM (2010) Competing epoxidation and allylic hydrogen activation: trans-beta-methylstyrene oxidation on Au(111). J Phys Chem C 114(11):5141–5147. doi: 10.1021/jp9121529 CrossRefGoogle Scholar
  45. 45.
    Liu XY, Baker TA, Friend CM (2010) Effect of molecular structure on epoxidation of allylic olefins by atomic oxygen on Au. Dalton T 39(36):8521–8526. doi: 10.1039/c0dt00047g CrossRefGoogle Scholar
  46. 46.
    Baker TA, Xu BJ, Jensen SC, Friend CM, Kaxiras E (2011) Role of defects in propene adsorption and reaction on a partially O-covered Au(111) surface. Catal Sci Technol 1(7):1166–1174. doi: 10.1039/c1cy00076d CrossRefGoogle Scholar
  47. 47.
    Nijhuis TA, Sacaliuc-Parvulescu E, Govender NS, Schouten JC, Weckhuysen BM (2009) The role of support oxygen in the epoxidation of propene over gold-titania catalysts investigated by isotopic transient kinetics. J Catal 265(2):161–169. doi: 10.1016/j.jcat.2009.04.023 CrossRefGoogle Scholar
  48. 48.
    Wendt S, Sprunger PT, Lira E, Madsen GKH, Li ZS, Hansen JØ, Matthiesen J, Blekinge-Rasmussen A, Laegsgaard E, Hammer B, Besenbacher F (2008) The role of interstitial sites in the Ti3d defect state in the band gap of titania. Science 320(5884):1755–1759. doi: 10.1126/Science.1159846 CrossRefGoogle Scholar
  49. 49.
    Roldan A, Torres D, Ricart JM, Illas F (2009) On the effectiveness of partial oxidation of propylene by gold: a density functional theory study. J Mol Catal Chem 306(1–2):6–10. doi: 10.1016/j.molcata.2009.02.013 CrossRefGoogle Scholar
  50. 50.
    Vaughan OPH, Kyriakou G, Macleod N, Tikhov M, Lambert RM (2005) Copper as a selective catalyst for the epoxidation of propene. J Catal 236(2):401–404. doi: 10.1016/J.Jcat.2005.10.019 CrossRefGoogle Scholar
  51. 51.
    Zope BN, Hibbitts DD, Neurock M, Davis RJ (2010) Reactivity of the gold/water interface during selective oxidation catalysis. Science 330(6000):74–78. doi: 10.1126/Science.1195055 CrossRefGoogle Scholar
  52. 52.
    Cant NW, Hall WK (1971) Catalytic oxidation. 4. Ethylene and propylene oxidation over gold. J Phys Chem 75(19):2914. doi: 10.1021/J100688a007 CrossRefGoogle Scholar
  53. 53.
    Madix RJ, Roberts JT (1994) The problem of heterogenously catalized partial oxidation: model studies on single crystal surfaces. In: Madix RJ (ed) Surface reactions. Springer, BerlinCrossRefGoogle Scholar
  54. 54.
    Liu XY, Xu BJ, Haubrich J, Madix RJ, Friend CM (2009) Surface-mediated self-coupling of ethanol on gold. J Am Chem Soc 131(16):5757. doi: 10.1021/Ja900822r CrossRefGoogle Scholar
  55. 55.
    Xu BJ, Liu XY, Haubrich J, Friend CM (2010) Vapour-phase gold-surface-mediated coupling of aldehydes with methanol. Nat Chem 2(1):61–65. doi: 10.1038/nchem.467 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Isabel Xiaoye Green
    • 1
  • Monica McEntee
    • 1
  • Wenjie Tang
    • 2
  • Matthew Neurock
    • 1
    • 2
  • John T. YatesJr.
    • 1
    • 2
    Email author
  1. 1.Department of ChemistryUniversity of VirginiaCharlottesvilleUSA
  2. 2.Department of Chemical EngineeringUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations