Topics in Catalysis

, Volume 56, Issue 15–17, pp 1441–1459 | Cite as

Current Understanding of Cu-Exchanged Chabazite Molecular Sieves for Use as Commercial Diesel Engine DeNOx Catalysts

  • Feng Gao
  • Ja Hun Kwak
  • Janos Szanyi
  • Charles H. F. Peden
Original Paper


Selective catalytic reduction (SCR) of NOx with ammonia using metal-exchanged molecular sieves with a chabazite structure has recently been commercialized on diesel vehicles. One of the commercialized catalysts, i.e., Cu-SSZ-13, has received much attention for both practical and fundamental studies. For the latter, the particularly well-defined structure of this zeolite is allowing long-standing issues of the catalytically active site for SCR in metal-exchanged zeolites to be addressed. In this review, recent progress is summarized with a focus on two areas. First, the technical significance of Cu-SSZ-13 as compared to other Cu ion-exchanged zeolites (e.g., Cu-ZSM-5 and Cu-beta) is highlighted. Specifically, the much enhanced hydrothermal stability for Cu-SSZ-13 compared to other zeolite catalysts is addressed via performance measurements and catalyst characterization using several techniques. The enhanced stability of Cu-SSZ-13 is rationalized in terms of the unique small pore structure of this zeolite catalyst. Second, the fundamentals of the catalytically active center; i.e., the chemical nature and locations within the SSZ-13 framework are presented with an emphasis on understanding structure–function relationships. For the SCR reaction, traditional kinetic studies are complicated by intra-crystalline diffusion limitations. However, a major side reaction, nonselective ammonia oxidation by oxygen, does not suffer from mass-transfer limitations at relatively low temperatures due to significantly lower reaction rates. This allows structure–function relationships that are rather well understood in terms of Cu ion locations and redox properties. Finally, some aspects of the SCR reaction mechanism are addressed on the basis of in situ spectroscopic studies.


Selective catalytic reduction Chabazite zeolite catalyst SSZ-13 Copper Diesel engine NOx 



The authors gratefully acknowledge the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy/Vehicle Technologies Program for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle. As Wayne Goodman’s previous coworkers and friends, the authors greatly appreciate his invaluable guidance and inspiration.


  1. 1.
    Fridell E, Skoglundh M, Westerberg B, Johansson S, Smedler G (1999) J Catal 183:196CrossRefGoogle Scholar
  2. 2.
    Epling WS, Campbell LE, Yezerets A, Currier NW, Parks JE II (2004) Catal Rev 46:163CrossRefGoogle Scholar
  3. 3.
    Roy S, Baiker A (2009) Chem Rev 109:4054CrossRefGoogle Scholar
  4. 4.
    Centi G, Perathoner S (1995) Appl Catal A 132:179CrossRefGoogle Scholar
  5. 5.
    Pârvulescu VI, Grange P, Delmon B (1998) Catal Today 46:233CrossRefGoogle Scholar
  6. 6.
    Brandenberger S, Krocher O, Tissler A, Althoff R (2008) Catal Rev 50:492CrossRefGoogle Scholar
  7. 7.
    Iwamoto M, Hamada H (1991) Catal Today 10:57CrossRefGoogle Scholar
  8. 8.
    Chen HY, Sachtler WMH (1998) Catal Today 42:73CrossRefGoogle Scholar
  9. 9.
    Chen HY, Sachtler WMH (1998) Catal Lett 50:125CrossRefGoogle Scholar
  10. 10.
    Long RQ, Yang RT (1999) J Am Chem Soc 121:5595CrossRefGoogle Scholar
  11. 11.
    US Patent 7,601,662 (2009), US Patent 7,704,475 (2010), US Patent 7,998,423 (2011), US Patent 7,998,443 (2011), US Patent 8,101,147 (2012), US Patent 8,182,777 (2012)Google Scholar
  12. 12.
    Kwak JH, Tonkyn RG, Kim DH, Szanyi J, Peden CHF (2010) J Catal 275:187CrossRefGoogle Scholar
  13. 13.
    Fickel DW, D’Addio E, Lauterbach JA, Lobo RF (2011) Appl Catal B 102:441CrossRefGoogle Scholar
  14. 14.
    Schmieg SJ, Oh SH, Kim CH, Brown DB, Lee JH, Peden CHF, Kim DH (2012) Catal Today 184:252CrossRefGoogle Scholar
  15. 15.
    Kwak JH, Tran D, Burton SD, Szanyi J, Lee JH, Peden CHF (2012) J Catal 287:203CrossRefGoogle Scholar
  16. 16.
    Ye Q, Wang LF, Yang RT (2012) Appl Catal A 427–428:24CrossRefGoogle Scholar
  17. 17.
    Kwak JH, Tran D, Szanyi J, Peden CHF, Lee JH (2012) Catal Lett 142:295CrossRefGoogle Scholar
  18. 18.
    Gao F, Walker ED, Karp EM, Luo JY, Tonkyn RG, Kwak JH, Szanyi J, Peden CHF (2013) J Catal 300:20CrossRefGoogle Scholar
  19. 19.
    Fickel DW, Lobo RF (2010) J Phys Chem C 114:1633CrossRefGoogle Scholar
  20. 20.
    Kwak JH, Zhu HY, Lee JH, Peden CHF, Szanyi J (2012) Chem Comm 48:4758CrossRefGoogle Scholar
  21. 21.
    Korhonen ST, Fickel DW, Lobo RF, Weckhuysen BM, Beale AM (2011) Chem Commun 47:800CrossRefGoogle Scholar
  22. 22.
    Deka U, Juhin A, Eilertsen EA, Emerich H, Green MA, Korhonen ST, Weckhuysen BM, Beale AM (2012) J Phys Chem C 116:4809CrossRefGoogle Scholar
  23. 23.
    Kispersky VF, Kropf AJ, Ribeiro FH, Miller JT (2012) Phys Chem Chem Phys 14:2229CrossRefGoogle Scholar
  24. 24.
    McEwen JS, Anggara T, Schneider WF, Kispersky VF, Miller JT, Delgass WN, Riberio FH (2012) Catal Today 184:129CrossRefGoogle Scholar
  25. 25.
    Szanyi J, Kwak JH, Zhu HY, Peden CHF (2013) Phys Chem Chem Phys 15:2368CrossRefGoogle Scholar
  26. 26.
    Ren LM, Zhu LF, Yang CG, Chen YM, Sun Q, Zhang HY, Li CJ, Nawaz F, Meng XJ, Xiao FS (2011) Chem Commun 47:9789CrossRefGoogle Scholar
  27. 27.
    Iwasaki M, Shinjoh H (2010) Appl Catal A 390:71CrossRefGoogle Scholar
  28. 28.
    Iwamoto M, Yahiro H, Tanda K, Mizuno N, Mine Y, Kagawa S (1991) J Phys Chem 95:3727CrossRefGoogle Scholar
  29. 29.
    Komatsu T, Nunokawa M, Moon IS, Takahara T, Namba S, Yashima T (1994) J Catal 148:427CrossRefGoogle Scholar
  30. 30.
    Ozkan US, Cai YP, Kumthekar MW (1994) J Catal 149:390CrossRefGoogle Scholar
  31. 31.
    Centi G, Perathoner S (1996) Catal Today 29:117CrossRefGoogle Scholar
  32. 32.
    Long RQ, Yang RT (2000) J Catal 194:80CrossRefGoogle Scholar
  33. 33.
    Chen HY, Sun Q, Wen B, Yeom YH, Weitz E, Sachtler WMH (2004) Catal Today 96:1CrossRefGoogle Scholar
  34. 34.
    Devadas M, Piazzesi G, Kröcher O, Wokaun A (2006) Appl Catal B 67:187CrossRefGoogle Scholar
  35. 35.
    Long RQ, Yang RT (2002) J Catal 207:224CrossRefGoogle Scholar
  36. 36.
    Delahay G, Valade D, Guzman-Vargas A, Coq B (2005) Appl Catal B 55:149CrossRefGoogle Scholar
  37. 37.
    Rahkamaa-Tolonen K, Maunula T, Lomma M, Huuhtanen M, Keiski RL (2005) Catal Today 100:217CrossRefGoogle Scholar
  38. 38.
    Yeom YH, Henao J, Li MJ, Sachtler WMH, Weitz E (2005) J Catal 231:181CrossRefGoogle Scholar
  39. 39.
    Zones SI (1985) US Patent 4,544,538Google Scholar
  40. 40.
    Broach RW (2010) Zeolite types and structures. In: Kulprathipanja S (ed) Zeolites in Industrial Separation and Catalysis. Wiley-CVH, WeinheimGoogle Scholar
  41. 41.
    Kucherov AV, Slinkin AA, Kondratev DA, Bondarenko TN, Rubinstein AM, Minachev KM (1985) Zeolites 5:320CrossRefGoogle Scholar
  42. 42.
    Kucherov AV, Slinkin AA (1986) Zeolites 6:175CrossRefGoogle Scholar
  43. 43.
    Sultana A, Nanba T, Sasaki M, Haneda M, Suzuki K, Hamada H (2011) Catal Today 164:495CrossRefGoogle Scholar
  44. 44.
    Bourgeat-Lami E, Massiani P, Di Renzo F, Espiau P, Fajula F, Des Courieres T (1991) Appl Catal 72:139CrossRefGoogle Scholar
  45. 45.
    Campbell SM, Bibby DM, Coddington JM, Howe RF, Meinholdz RH (1996) J Catal 161:338CrossRefGoogle Scholar
  46. 46.
    Park JH, Park HJ, Baik JH, Nam IS, Shin CH, Lee JH, Cho BK, Oh SH (2006) J Catal 240:47CrossRefGoogle Scholar
  47. 47.
    Kröcher O, Devadas M, Elsener M, Wokaun A, Söger N, Pfeifer M, Demel Y, Mussmann L (2006) Appl Catal B 66:208CrossRefGoogle Scholar
  48. 48.
    Cheng Y, Hoard J, Lambert C, Kwak JH (2008) Peden CHF 136:34Google Scholar
  49. 49.
    Huang HY, Long RQ, Yang RT (2002) Appl Catal A 235:241CrossRefGoogle Scholar
  50. 50.
    Shichi A, Katagi K, Satsuma A, Hattori T (2000) Appl Catal B 24:97CrossRefGoogle Scholar
  51. 51.
    Chen NY, Degnan TF Jr, Smith CM (1994) Molecular Transport and Reaction in Zeolites. VCH, New YorkGoogle Scholar
  52. 52.
    Ruthven DM, Post MFM (2001) Stud Surf Sci Catal 137:525CrossRefGoogle Scholar
  53. 53.
    Ruthven DM (2007) Stud Surf Sci Catal 168:737CrossRefGoogle Scholar
  54. 54.
    Yang XF, Wu ZL, Moses-Debusk M, Mullins DR, Mahurin SM, Geiger RA, Kidder M, Narula CK (2012) J Phys Chem C 116:23322CrossRefGoogle Scholar
  55. 55.
    Zhu HY, Kwak JH, Peden CHF, Szanyi J (2013) Catal Today 205:16CrossRefGoogle Scholar
  56. 56.
    Elzey S, Mubayi A, Larsen SC, Grassian VH (2008) J Mol Catal A 285:48CrossRefGoogle Scholar
  57. 57.
    Kamasamudram K, Currier NW, Chen X, Yezerets A (2012) Catal Today 151:212CrossRefGoogle Scholar
  58. 58.
    Metkar PS, Balakotaiah V, Harold MP (2012) Catal Today 184:115CrossRefGoogle Scholar
  59. 59.
    Centi G, Perathoner S, Biglino P, Giamello E (1995) J Catal 152:75CrossRefGoogle Scholar
  60. 60.
    Centi G, Perathoner S (1995) J Catal 152:93CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2013

Authors and Affiliations

  • Feng Gao
    • 1
  • Ja Hun Kwak
    • 1
  • Janos Szanyi
    • 1
  • Charles H. F. Peden
    • 1
  1. 1.Institute for Integrated CatalysisPacific Northwest National LaboratoryRichlandUSA

Personalised recommendations