Topics in Catalysis

, Volume 56, Issue 15–17, pp 1499–1511 | Cite as

The Effects of Adsorbed Water on Gold Catalysis and Surface Chemistry

  • Gregory M. Mullen
  • Jinlong Gong
  • Ting Yan
  • Ming Pan
  • C. Buddie MullinsEmail author
Original Paper


Water has important effects on several reactions occurring over gold catalysts. In this work, we review studies demonstrating the interactions of water in surface chemistry and catalysis over gold, with specific emphasis on the ability of water to enhance activity for the CO oxidation reaction and the role water plays in the mechanism of the water–gas shift reaction. Water significantly influences these and other catalytic reactions over gold catalysts.


Gold Catalysis Surface science Carbon monoxide Water 



The authors would like to thank D.W. Goodman, to whom this article is dedicated, for all of his influential contributions to the fields of catalysis and surface science. We acknowledge the generous support of the Department of Energy (DE-FG02-04ER15587), the Welch Foundation (F-1436), the National Science Foundation of China (21222604), the Program for New Century Excellent Talents in University (NCET-11-0611), the Scientific Research Foundation for the Returned Overseas Chinese Scholars (MoE), and the Program of Introducing Talents of Discipline to Universities (B06006). G.M.M. thanks the National Science Foundation Graduate Research Fellowship program for financial support.


  1. 1.
    Hammer B, Nørskov JK (1995) Why gold is the noblest of all the metals. Nature 376:238–240CrossRefGoogle Scholar
  2. 2.
    Bond GC, Thompson DT (1999) Catalysis by gold. Catal Rev 41:319–388CrossRefGoogle Scholar
  3. 3.
    Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45:7896–7936CrossRefGoogle Scholar
  4. 4.
    Haruta M (1997) Size-and support-dependency in the catalysis of gold. Catal Today 36:153–166CrossRefGoogle Scholar
  5. 5.
    Gong J (2012) Structure and surface chemistry of gold-based model catalysts. Chem Rev 112:2987–3054CrossRefGoogle Scholar
  6. 6.
    Meyer R, Lemire C, Shaikhutdinov SK, Freund H-J (2004) Surface chemistry of catalysis by gold. Gold Bull 37:72–124CrossRefGoogle Scholar
  7. 7.
    Gong J, Mullins CB (2009) Surface science investigations of oxidative chemistry on gold. Acc Chem Res 42:1063–1073CrossRefGoogle Scholar
  8. 8.
    Gong J, Mullins CB (2008) Selective oxidation of ethanol to acetaldehyde on gold. J Am Chem Soc 130:16458–16459CrossRefGoogle Scholar
  9. 9.
    Gong J, Yan T, Mullins CB (2009) Selective oxidation of propylamine to propionitrile and propionaldehyde on oxygen-covered gold. Chem Commun 761–763CrossRefGoogle Scholar
  10. 10.
    McClure SM, Kim TS, Stiehl JD, Tanaka PL, Mullins CB (2004) Adsorption and reaction of nitric oxide with atomic oxygen covered Au(111). J Phys Chem B 108:17952–17958CrossRefGoogle Scholar
  11. 11.
    Gong J, Ojifinni RA, Kim TS, White JM, Mullins CB (2006) Selective catalytic oxidation of ammonia to nitrogen on atomic oxygen precovered Au(111). J Am Chem Soc 128:9012–9013CrossRefGoogle Scholar
  12. 12.
    Gong J, Flaherty DW, Ojifinni RA, White JM, Mullins CB (2008) Surface chemistry of methanol on clean and atomic oxygen pre-covered Au(111). J Phys Chem C 112:5501–5509CrossRefGoogle Scholar
  13. 13.
    Gong J, Flaherty DW, Yan T, Mullins CB (2008) Selective oxidation of propanol on Au(111): mechanistic insights into aerobic oxidation of alcohols. ChemPhysChem 9:2461–2466CrossRefGoogle Scholar
  14. 14.
    Yan T, Gong J, Mullins CB (2009) Oxygen exchange in the selective oxidation of 2-butanol on oxygen precovered Au(111). J Am Chem Soc 131:16189–16194CrossRefGoogle Scholar
  15. 15.
    Outka DA, Madix RJ (1987) Brønsted basicity of atomic oxygen on the Au(110) surface: reactions with methanol, acetylene, water, and ethylene. J Am Chem Soc 109:1708–1714CrossRefGoogle Scholar
  16. 16.
    Outka DA, Madix RJ (1987) The oxidation of carbon monoxide on the Au(110) surface. Surf Sci 179:351–360CrossRefGoogle Scholar
  17. 17.
    Outka DA, Madix RJ (1987) Acid-base and nucleophilic chemistry of atomic oxygen on the Au(110) surface: reactions with formic acid and formaldehyde. Surf Sci 179:361–376CrossRefGoogle Scholar
  18. 18.
    Min BK, Friend CM (2007) Heterogeneous gold-based catalysis for green chemistry: low-temperature CO oxidation and propene oxidation. Chem Rev 107:2709–2724CrossRefGoogle Scholar
  19. 19.
    Deng X, Min BK, Guloy A, Friend CM (2005) Enhancement of O2 dissociation on Au(111) by adsorbed oxygen: implications for oxidation catalysis. J Am Chem Soc 127:9267–9270CrossRefGoogle Scholar
  20. 20.
    Min BK, Alemozafar AR, Pinnaduwage D, Deng X, Friend CM (2006) Efficient CO oxidation at low temperature on Au(111). J Phys Chem B 110:19833–19838CrossRefGoogle Scholar
  21. 21.
    Deng X, Friend CM (2005) Selective oxidation of styrene on an oxygen-covered Au(111). J Am Chem Soc 127:17178–17179CrossRefGoogle Scholar
  22. 22.
    Baker TA, Liu X, Friend CM (2011) The mystery of gold’s chemical activity: local bonding, morphology and reactivity of atomic oxygen. Phys Chem Chem Phys 13:34–46CrossRefGoogle Scholar
  23. 23.
    Deng X, Min BK, Liu X, Friend CM (2006) Partial oxidation of propene on oxygen-covered Au(111). J Phys Chem B 110:15982–15987CrossRefGoogle Scholar
  24. 24.
    Lazaga MA, Wickham DT, Parker DH, Kastanas GN, Koel BE (1993) Reactivity of oxygen adatoms on the Au(111) surface. ACS Symp Ser 523:90–109CrossRefGoogle Scholar
  25. 25.
    Samano E, Kim J, Koel BE (2008) Investigation of CO oxidation transient kinetics on an oxygen pre-covered Au(211) stepped surface. Catal Lett 128:263–267CrossRefGoogle Scholar
  26. 26.
    Kim J, Samano E, Koel BE (2006) CO adsorption and reaction on clean and oxygen-covered Au(211) surfaces. J Phys Chem B 110:17512–17517CrossRefGoogle Scholar
  27. 27.
    Kim J, Samano E, Koel BE (2006) Oxygen adsorption and oxidation reactions on Au(211) surfaces: exposures using O2 at high pressures and ozone (O3) in UHV. Surf Sci 600:4622–4632CrossRefGoogle Scholar
  28. 28.
    Madix RJ, Friend CM, Liu X (2008) Anticipating catalytic oxidation reactions on gold at high pressure (including liquid phase) from ultrahigh vacuum studies. J Catal 258:410–413CrossRefGoogle Scholar
  29. 29.
    Bartram ME, Koel BE (1989) The molecular adsorption of NO2 and the formation of N2O3 on Au(111). Surf Sci 213:137–156CrossRefGoogle Scholar
  30. 30.
    Saliba N, Parker DH, Koel BE (1998) Adsorption of oxygen on Au(111) by exposure to ozone. Surf Sci 410:270–282CrossRefGoogle Scholar
  31. 31.
    Pan M, Flaherty DW, Mullins CB (2011) Low-temperature hydrogenation of acetaldehyde to ethanol on H-precovered Au(111). J Phys Chem Lett 2:1363–1367CrossRefGoogle Scholar
  32. 32.
    Pan M, Pozun ZD, Brush AJ, Henkelman G, Mullins CB (2012) Low-temperature chemoselective gold-surface-mediated hydrogenation of acetone and propionaldehyde. ChemCatChem 4:1241–1244CrossRefGoogle Scholar
  33. 33.
    Sault AG, Madix RJ, Campbell CT (1986) Adsorption of oxygen and hydrogen on Au(110)-(1 × 2). Surf Sci 169:347–356CrossRefGoogle Scholar
  34. 34.
    Pan M, Brush AJ, Pozun ZD, Ham HC, Yu W-Y, Henkelman G, Hwang GS, Mullins CB (2013) Model studies of heterogeneous catalytic hydrogenation reactions with gold. Chem Rev Soc 42:5002–5013CrossRefGoogle Scholar
  35. 35.
    Pan M, Ham HC, Yu W-Y, Hwang GS, Mullins CB (2013) Highly selective, facile NO2 reduction to NO at cryogenic temperatures on hydrogen precovered gold. J Am Chem Soc 135:436–442CrossRefGoogle Scholar
  36. 36.
    Brush AJ, Pan M, Mullins CB (2012) Methanol O–H bond dissociation on H-precovered gold originating from a structure with a wide range of surface stability. J Phys Chem C 116:20982–20989CrossRefGoogle Scholar
  37. 37.
    Henderson MA (2002) The interaction of water with solid surfaces: fundamental aspects revisited. Surf Sci Rep 46:1–308CrossRefGoogle Scholar
  38. 38.
    Ojifinni RA, Froemming NS, Gong J, Pan M, Kim TS, White JM, Henkelman G, Mullins CB (2008) Water-enhanced low-temperature CO oxidation and isotope effects on atomic oxygen-covered Au(111). J Am Chem Soc 130:6801–6812CrossRefGoogle Scholar
  39. 39.
    Ojifinni RA, Gong J, Flaherty DW, Kim TS, Mullins CB (2009) Annealing effect on reactivity of oxygen-covered Au(111). J Phys Chem C 113:9820–9825CrossRefGoogle Scholar
  40. 40.
    Bowker M, Barteau MA, Madix RJ (1980) Oxygen induced adsorption and reaction of H2, H2O, CO and CO2 on single crystal Ag(110). Surf Sci 92:528–548CrossRefGoogle Scholar
  41. 41.
    Pan M, Hoang S, Mullins CB (2011) Interaction of water with the clean and oxygen pre-covered Ir(111) surface. Catal Today 160:198–203CrossRefGoogle Scholar
  42. 42.
    Quiller RG, Baker TA, Deng X, Colling ME, Min BK, Friend CM (2008) Transient hydroxyl formation from water on oxygen-covered Au(111). J Chem Phys 129:064702CrossRefGoogle Scholar
  43. 43.
    Fisher GB, Sexton BA (1980) Identification of an adsorbed hydroxyl species on the Pt(111) surface. Phys Rev Lett 44:683–686CrossRefGoogle Scholar
  44. 44.
    Bedürftig K, Völkening S, Wang Y, Wintterlin J, Jacobi K, Ertl G (1999) Vibrational and structural properties of OH adsorbed on Pt(111). J Chem Phys 111:11147–11154CrossRefGoogle Scholar
  45. 45.
    Clay C, Cummings L, Hodgson A (2007) Mixed water/OH structures on Pd(111). Surf Sci 601:562–568CrossRefGoogle Scholar
  46. 46.
    Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem Lett 16:405–408CrossRefGoogle Scholar
  47. 47.
    Haruta M, Yamada N, Kobayashi T, Iijima S (1989) Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal 115:301–309CrossRefGoogle Scholar
  48. 48.
    Bond GC, Sermon PA (1973) Gold catalysts for olefin hydrogenation. Gold Bull 6:102–105CrossRefGoogle Scholar
  49. 49.
    Bond GC, Sermon PA, Webb G, Buchanan DA, Wells PB (1973) Hydrogenation over supported gold catalysts. J Chem Soc, Chem Commun 13:5–6Google Scholar
  50. 50.
    Hutchings GJ (1985) Vapor phase hydrochlorination of acetylene: correlation of catalytic activity of supported metal chloride catalysts. J Catal 96:292–295CrossRefGoogle Scholar
  51. 51.
    Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281:1647–1650CrossRefGoogle Scholar
  52. 52.
    Chen MS, Goodman DW (2004) The structure of catalytically active gold on titania. Science 306:252–255CrossRefGoogle Scholar
  53. 53.
    Goodman DW (2003) Model catalysts: from imagining to imaging a working surface. J Catal 216:213–222CrossRefGoogle Scholar
  54. 54.
    Valden M, Pak S, Lai X, Goodman DW (1998) Structure sensitivity of CO oxidation over model Au/TiO2 catalysts. Catal Lett 56:7–10CrossRefGoogle Scholar
  55. 55.
    Chen MS, Goodman DW (2006) Catalytically active gold: from nanoparticles to ultrathin films. Acc Chem Res 39:739–746CrossRefGoogle Scholar
  56. 56.
    Chen MS, Goodman DW (2006) Structure–activity relationships in supported Au catalysts. Catal Today 111:22–33CrossRefGoogle Scholar
  57. 57.
    Lopez N, Janssens TVW, Clausen BS, Xu Y, Mavrikakis M, Bligaard T, Nørskov JK (2004) On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J Catal 223:232–235CrossRefGoogle Scholar
  58. 58.
    Lemire C, Meyer R, Shaikhutdinov S, Freund H-J (2004) Do quantum size effects control CO adsorption on gold nanoparticles? Angew Chem Int Ed 43:118–121CrossRefGoogle Scholar
  59. 59.
    Haruta M, Tsubota S, Kobayhashi T, Kageyama H, Genet MJ, Delmon B (1993) Low-temperature oxidation over gold supported on TiO2, α-Fe2O3, and Co3O4. J Catal 144:175–192CrossRefGoogle Scholar
  60. 60.
    Haruta M (2003) When gold is not noble: catalysis by nanoparticles. Chem Rec 3:75–87CrossRefGoogle Scholar
  61. 61.
    Yan T, Redman DW, Yu W-Y, Flaherty DW, Rodriguez JA, Mullins CB (2012) CO oxidation on inverse Fe2O3/Au(111) model catalysts. J Catal 294:216–222CrossRefGoogle Scholar
  62. 62.
    Magkoev TT (2007) Interaction of carbon monoxide and oxygen at the surface of inverse titania/Au model catalyst. Surf Sci 601:3143–3148CrossRefGoogle Scholar
  63. 63.
    Gottfried JM, Christmann K (2004) Oxidation of carbon monoxide over Au(110)-(1 × 2). Surf Sci 566–568:1112–1117CrossRefGoogle Scholar
  64. 64.
    Gottfried JM, Schmidt KJ, Schroeder SLM, Christmann K (2003) Oxygen chemisorption on Au(110)-(1 × 2) II. Spectroscopic and reactive thermal desorption measurements. Surf Sci 525:197–206CrossRefGoogle Scholar
  65. 65.
    Kim TS, Gong J, Ojifinni RA, White JM, Mullins CB (2006) Water activated by atomic oxygen on Au(111) to oxidize CO at low temperatures. J Am Chem Soc 128:6282–6283CrossRefGoogle Scholar
  66. 66.
    Gong J, Ojifinni RA, Kim TS, Stiehl JD, McClure SM, White JM, Mullins CB (2007) Low temperature CO oxidation on Au(111) and the role of adsorbed water. Top Catal 44:57–63CrossRefGoogle Scholar
  67. 67.
    Stiehl JD, Kim TS, McClure SM, Mullins CB (2004) Reaction of CO with molecularly chemisorbed oxygen on TiO2-supported gold nanoclusters. J Am Chem Soc 126:13574–13575CrossRefGoogle Scholar
  68. 68.
    Stiehl JD, Kim TS, McClure SM, Mullins CB (2004) Evidence for molecularly chemisorbed oxygen on TiO2 supported gold nanoclusters and Au(111). J Am Chem Soc 126:1606–1607CrossRefGoogle Scholar
  69. 69.
    Kim TS, Stiehl JD, Reeves CT, Meyer RJ, Mullins CB (2003) Cryogenic CO oxidation on TiO2-supported gold nanoclusters precovered with atomic oxygen. J Am Chem Soc 125:2018–2019CrossRefGoogle Scholar
  70. 70.
    Stiehl JD, Kim TS, Reeves CT, Meyer RJ, Mullins CB (2004) Reactive scattering of CO from an oxygen-atom-covered Au/TiO2 model catalyst. J Phys Chem B 108:7917–7926CrossRefGoogle Scholar
  71. 71.
    Bondzie VA, Parker SC, Campbell CT (1999) The kinetics of CO oxidation by adsorbed oxygen on well-defined gold particles on TiO2(110). Catal Lett 63:143–151CrossRefGoogle Scholar
  72. 72.
    Daté M, Haruta M (2001) Moisture effect on CO oxidation over Au/TiO2 catalyst. J Catal 201:221–224CrossRefGoogle Scholar
  73. 73.
    Daté M, Okumura M, Tsubota S, Haruta M (2004) Vital role of moisture in the catalytic activity of supported gold nanoparticles. Angew Chem Int Ed 43:2129–2132CrossRefGoogle Scholar
  74. 74.
    Schubert MM, Venugopal A, Kahlich MJ, Plzak V, Behm RJ (2004) Influence of H2O and CO2 on the selective CO oxidation in H2-rich gases over Au/α-Fe2O3. J Catal 222:32–40CrossRefGoogle Scholar
  75. 75.
    Boccuzzi F, Chiorino A (2000) FTIR study of CO oxidation on Au/TiO2 at 90 K and room temperature. An insight into the nature of the reaction centers. J Phys Chem B 104:5414–5416CrossRefGoogle Scholar
  76. 76.
    Gao F, Wood TE, Goodman DW (2010) The effects of water on CO oxidation over TiO2 supported Au catalysts. Catal Lett 134:9–12CrossRefGoogle Scholar
  77. 77.
    Konova P, Naydenov A, Venkov C, Mehandjiev D, Andreeva D, Tabakova T (2004) Activity and deactivation of Au/TiO2 catalyst in CO oxidation. J Mol Catal A Chem 213:235–240CrossRefGoogle Scholar
  78. 78.
    Ojifinni RA, Gong J, Froemming NS, Flaherty DW, Pan M, Henkelman G, Mullins CB (2008) Carbonate formation and decomposition on atomic oxygen precovered Au(111). J Am Chem Soc 130:11250–11251CrossRefGoogle Scholar
  79. 79.
    Gong J, Mullins CB (2008) Enhanced carbonate formation on gold. J Phys Chem C 112:17631–17634CrossRefGoogle Scholar
  80. 80.
    Yan T, Gong J, Flaherty DW, Mullins CB (2011) The effect of adsorbed water in CO oxidation on Au/TiO2(110). J Phys Chem C 115:2057–2065CrossRefGoogle Scholar
  81. 81.
    Sanchez-Castillo MA, Couto C, Kim WB, Dumesic JA (2004) Gold-nanotube membranes for the oxidation of CO at gas–water interfaces. Angew Chem Int Ed 43:1140–1142CrossRefGoogle Scholar
  82. 82.
    Calla JT, Davis RJ (2005) Influence of dihydrogen and water vapor on the kinetics of CO oxidation over Au/Al2O3. Ind Eng Chem Res 44:5403–5410CrossRefGoogle Scholar
  83. 83.
    Costello CK, Yang JH, Law HY, Wang Y, Lin J-N, Marks LD, Kung MC, Kung HH (2003) On the potential role of hydroxyl groups in CO oxidation over Au/Al2O3. Appl Catal A 243:15–24CrossRefGoogle Scholar
  84. 84.
    Costello CK, Kung MC, Oh H-S, Wang Y, Kung HH (2002) Nature of the active site for CO oxidation on highly active Au/γ-Al2O3. Appl Catal A 232:159–168CrossRefGoogle Scholar
  85. 85.
    Daniells ST, Makkee M, Moulijn JA (2005) The effect of high-temperature pre-treatment and water on the low temperature CO oxidation with Au/Fe2O3 catalysts. Catal Lett 100:39–47CrossRefGoogle Scholar
  86. 86.
    Bond GC, Thompson DT (2000) Gold-catalysed oxidation of carbon monoxide. Gold Bull 33:41–50CrossRefGoogle Scholar
  87. 87.
    Ojeda M, Zhan B-Z, Iglesia E (2012) Mechanistic interpretation of CO oxidation turnover rates on supported Au clusters. J Catal 285:92–102CrossRefGoogle Scholar
  88. 88.
    Barrio L, Liu P, Rodriguez JA, Campos-Martin JM, Fierro JLG (2007) Effects of hydrogen on the reactivity of O2 toward gold nanoparticles and surfaces. J Phys Chem C 111:19001–19008CrossRefGoogle Scholar
  89. 89.
    Barton DG, Podkolzin SG (2005) Kinetic study of a direct water synthesis over silica-supported gold nanoparticles. J Phys Chem B 109:2262–2274CrossRefGoogle Scholar
  90. 90.
    Campbell CT, Sharp JC, Yao YX, Karp EM, Silbaugh TL (2011) Insights into catalysis by gold nanoparticles and their support effects through surface science studies of model catalysts. Faraday Discuss 152:227–239CrossRefGoogle Scholar
  91. 91.
    Bongiorno A, Landman U (2005) Water-enhanced catalysis of CO oxidation on free and supported gold nanoclusters. Phys Rev Lett 95:106102CrossRefGoogle Scholar
  92. 92.
    Landon P, Collier PJ, Papworth AJ, Kiely CJ, Hutchings GJ (2002) Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst. Chem Commun 2058–2059CrossRefGoogle Scholar
  93. 93.
    Bergeld J, Kasemo B, Chakarov DV (2001) CO oxidation on Pt(111) promoted by coadsorbed H2O. Surf Sci Lett 495:L815–L820CrossRefGoogle Scholar
  94. 94.
    Gong X-Q, Hu P, Raval R (2003) The catalytic role of water in CO oxidation. J Chem Phys 119:6324–6334CrossRefGoogle Scholar
  95. 95.
    Nibbelke RH, Campman MAJ, Hoebink JHBJ, Marin GB (1997) Kinetic study of the CO oxidation over Pt/γ-Al2O3 and Pt/Rh/CeO2/γ-Al2O3 in the presence of H2O and CO2. J Catal 171:358–373CrossRefGoogle Scholar
  96. 96.
    Manasilp A, Gulari E (2002) Selective CO oxidation over Pt/alumina catalysts for fuel cell applications. Appl Catal B 37:17–25CrossRefGoogle Scholar
  97. 97.
    Lei T, Zei MS, Ertl G (2005) Electrocatalytic oxidation of CO on Pt-modified Ru(0001) electrodes. Surf Sci 581:142–154CrossRefGoogle Scholar
  98. 98.
    Desai S, Neurock M (2003) A first principles analysis of CO oxidation over Pt and Pt66.7%Ru33.3% (111) surfaces. Electrochim Acta 48:3759–3773CrossRefGoogle Scholar
  99. 99.
    Choudhary TV, Goodman DW (2002) CO-free fuel processing for fuel cell applications. Catal Today 77:65–78CrossRefGoogle Scholar
  100. 100.
    Andreeva D, Idakiev V, Tabakova T, Andreeva A, Giovanoli R (1996) Low-temperature water–gas shift reaction on Au/α-Fe2O3 catalyst. Appl Catal A 134:275–283CrossRefGoogle Scholar
  101. 101.
    Andreeva D (2002) Low temperature water gas shift over gold catalysts. Gold Bull 35:82–88CrossRefGoogle Scholar
  102. 102.
    Burch R (2006) Gold catalysts for pure hydrogen production in the water–gas shift reaction: activity, structure and reaction mechanism. Phys Chem Chem Phys 8:5483–5500CrossRefGoogle Scholar
  103. 103.
    Nakamura J, Campbell JM, Campbell CT (1990) Kinetics and mechanism of the water–gas shift reaction catalysed by the clean and Cs-promoted Cu(110) surface: a comparison with Cu(111). J Chem Soc Faraday Trans 86:2725–2734CrossRefGoogle Scholar
  104. 104.
    Boccuzzi F, Chiorino A, Manzoli M, Andreeva D, Tabakova T (1999) FTIR study of the low-temperature water–gas shift reaction on Au/Fe2O3 and Au/TiO2 catalysts. J Catal 188:176–185CrossRefGoogle Scholar
  105. 105.
    Jacobs G, Ricote S, Patterson PM, Graham UM, Dozier A, Khalid S, Rhodus E, Davis BH (2005) Low temperature water–gas shift: examining the efficiency of Au as a promoter for ceria-based catalysts prepared by CVD of a Au precursor. Appl Catal A 292:229–243CrossRefGoogle Scholar
  106. 106.
    Shido T, Iwasawa Y (1993) Reactant-promoted reaction mechanism for water–gas shift reaction on Rh-doped CeO2. J Catal 141:71–81CrossRefGoogle Scholar
  107. 107.
    Leppelt R, Schumacher B, Plzak V, Kinne M, Behm RJ (2006) Kinetics and mechanism of the low-temperature water–gas shift reaction on Au/CeO2 catalysts in an idealized reaction atmosphere. J Catal 244:137–152CrossRefGoogle Scholar
  108. 108.
    Meunier FC, Reid D, Goguet A, Shekhtman S, Hardacre C, Burch R, Deng W, Flytzani-Stephanopoulos M (2007) Quantitative analysis of the reactivity of formate species seen by DRIFTS over a Au/Ce(La)O2 water–gas shift catalyst: first unambiguous evidence of the minority role of formates as reaction intermediates. J Catal 247:277–287CrossRefGoogle Scholar
  109. 109.
    Chen Y, Wang H, Burch R, Hardacre C, Hu P (2011) New insight into mechanisms in water–gas-shift reaction on Au/CeO2(111): a density functional theory and kinetic study. Faraday Discuss 152:121–133CrossRefGoogle Scholar
  110. 110.
    Grabow LC, Gokhale AA, Evans ST, Dumesic JA, Mavrikakis M (2008) Mechanism of the water gas shift reaction on Pt: first principles, experiments, and microkinetic modeling. J Phys Chem C 112:4608–4617CrossRefGoogle Scholar
  111. 111.
    Flaherty DW, Yu W-Y, Pozun ZD, Henkelman G, Mullins CB (2011) Mechanism for the water–gas shift reaction on monofunctional platinum and cause of catalyst deactivation. J Catal 282:278–288CrossRefGoogle Scholar
  112. 112.
    Liu P, Rodriguez JA (2007) Water–gas-shift reaction on metal nanoparticles and surfaces. J Chem Phys 126:164705CrossRefGoogle Scholar
  113. 113.
    Rodriguez JA, Ma S, Liu P, Hrbek J, Evans J, Perez M (2007) Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water–gas shift reaction. Science 318:1757–1760CrossRefGoogle Scholar
  114. 114.
    Liu Z-P, Jenkins SJ, King DA (2005) Origin and activity of oxidized gold in water–gas-shift catalysis. Phys Rev Lett 94:196102CrossRefGoogle Scholar
  115. 115.
    Senanayake SD, Stacchiola D, Liu P, Mullins CB, Hrbek J, Rodriguez JA (2009) Interaction of CO with OH on Au(111): HCOO, CO3, and HOCO as key intermediates in the water–gas shift reaction. J Phys Chem C 113:19536–19544CrossRefGoogle Scholar
  116. 116.
    Senanayake SD, Stacchiola D, Evans J, Estrella M, Barrio L, Pérez M, Hrbek J, Rodriguez JA (2010) Probing the reaction intermediates for the water–gas shift over inverse CeOx/Au(111) catalysts. J Catal 271:392–400CrossRefGoogle Scholar
  117. 117.
    Rodriguez JA, Liu P, Hrbek J, Evans J, Pérez M (2007) Water gas shift reaction on Cu and Au nanoparticles supported on CeO2(111) and ZnO(0001): intrinsic activity and importance of support interactions. Angew Chem Int Ed 46:1329–1332CrossRefGoogle Scholar
  118. 118.
    Zhao X, Ma S, Hrbek J, Rodriguez JA (2007) Reaction of water with Ce–Au(111) and CeOx/Au(111) surfaces: photoemission and STM studies. Surf Sci 601:2445–2452CrossRefGoogle Scholar
  119. 119.
    Rodriguez JA (2011) Gold-based catalysts for the water–gas shift reaction: active sites and reaction mechanism. Catal Today 160:3–10CrossRefGoogle Scholar
  120. 120.
    Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Active nonmetallic Au and Pt species on ceria-based water–gas shift catalysts. Science 301:935–938CrossRefGoogle Scholar
  121. 121.
    Wang X, Rodriguez JA, Hanson JC, Pérez M, Evans J (2005) In situ time-resolved characterization of Au–CeO2 and AuOx–CeO2 catalysts during the water–gas shift reaction: presence of Au and O vacancies in the active phase. J Chem Phys 123:221101CrossRefGoogle Scholar
  122. 122.
    Hayashi T, Tanaka K, Haruta M (1998) Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J Catal 178:566–575CrossRefGoogle Scholar
  123. 123.
    Huang J, Akita T, Faye J, Fujitani T, Takei T, Haruta M (2009) Propene epoxidation with dioxygen catalyzed by gold clusters. Angew Chem Int Ed 48:7862–7866CrossRefGoogle Scholar
  124. 124.
    Lee S, Molina LM, López MJ, Alonso JA, Hammer B, Lee B, Seifert S, Winans RE, Elam JW, Pellin MJ, Vajda S (2009) Selective propene epoxidation on immobilized Au6–10 clusters: the effect of hydrogen and water on activity and selectivity. Angew Chem Int Ed 48:1467–1471CrossRefGoogle Scholar
  125. 125.
    Ojeda M, Iglesia E (2009) Catalytic epoxidation of propene with H2O–O2 reactants on Au/TiO2. Chem Commun 352–354CrossRefGoogle Scholar
  126. 126.
    Chang C-R, Wang Y-G, Li J (2010) Theoretical investigations of the catalytic role of water in propene epoxidation on gold nanoclusters: a hydroperoxyl-mediated pathway. Nano Res 4:131–142CrossRefGoogle Scholar
  127. 127.
    Ueda A, Oshima T, Haruta M (1997) Reduction of nitrogen monoxide with propene in the presence of oxygen and moisture over gold supported on metal oxides. Appl Catal B 12:81–93CrossRefGoogle Scholar
  128. 128.
    Zope BN, Hibbitts DD, Neurock M, Davis RJ (2010) Reactivity of the gold/water interface during selective oxidation catalysis. Science 330:74–78CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Gregory M. Mullen
    • 1
  • Jinlong Gong
    • 2
  • Ting Yan
    • 1
  • Ming Pan
    • 1
  • C. Buddie Mullins
    • 1
    Email author
  1. 1.Departments of Chemical Engineering and Chemistry and Biochemistry, Center for Nano and Molecular Science and Technology, Texas Materials Institute, and Center for ElectrochemistryUniversity of Texas at AustinAustinUSA
  2. 2.Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations