Topics in Catalysis

, Volume 56, Issue 15–17, pp 1299–1313 | Cite as

Kinetics and Active Surfaces for CO Oxidation on Pt-Group Metals Under Oxygen Rich Conditions

  • Mingshu Chen
  • Yanping Zheng
  • Huilin Wan
Original Paper


This mini review summaries recent works on identifying the active surfaces for CO oxidation on Pd, Pt, and Rh under oxygen rich conditions. A significantly high reaction rate for CO oxidation under oxygen rich conditions has been observed. Results using in situ characterization methods of ambient scanning tunneling microscope, surface X-ray diffraction, ambient pressure X-ray photoemission spectroscopy, X-ray absorption spectroscopy, and infrared reflection adsorption spectroscopy (IRAS), were included. Most X-ray related methods reveal that the achievements of the high reaction rates for CO oxidation on Pd, Pt, and Rh under oxygen rich conditions are accompanied with the appearance of oxides on the surface, leading to that the oxide phase is considered to be the active surface. In contrast, recent in situ IRAS results conclude that a chemisorbed oxygen covered metallic surface is the active surface. Kinetic data support that the reaction on the metallic surfaces can reach the high rate, e.g. a mass-transfer limit turnover frequency, without the necessity of the presence of oxide. Therefore, we point out that the appearance of oxides on Pt-group metals during CO oxidation is possibly due to the transfer-limit of CO gas, resulting in exposing the catalyst surface to an ambient atmosphere much richer in oxygen and thus building-up the oxide. Moreover, photons in X-ray related experiments may aid to overcome the formation barrier of oxide on a chemisorbed oxygen covered metallic surface. The formation of oxide is also affected by the mass-transfer properties of the in situ reaction cells. If the amount of incoming CO molecules under the mass-transfer limit of CO is high enough, the build-up of oxide may be precluded being consumed by reacting with CO.


Palladium Rhodium Platinum CO oxidation Active surface Surface oxide Chemisorbed oxygen In situ characterization 



We gratefully acknowledge the support of this work by the National Basic Research Program of China (973 Program: 2010CB732303, 2013CB933102), the Major Project of Chinese Ministry of Education (No. 309019), the National Natural Science Foundation of China (20923004, 21033006, 21073149, 21273178), the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT1036), and the PhD Programs Foundation of Chinese Ministry of Education (No. 20110121110010).


  1. 1.
    Langmuir I (1922) The mechanism of the catalytic action of platinum in the reactions 2CO + O2 = 2CO2 and 2H2 + O2 = 2H2O. Trans Faraday Soc 17:621–654CrossRefGoogle Scholar
  2. 2.
    Berlowitz PJ, Peden CHF, Goodman DW (1988) Kinetics of CO oxidation on single-crystal Pd, Pt, and Ir. J Phys Chem 92(18):5213–5221CrossRefGoogle Scholar
  3. 3.
    Rodriguez JA, Goodman DW (1991) High-pressure catalytic reactions over single-crystal metal-surfaces. Surf Sci Rep 14(1–2):1–107CrossRefGoogle Scholar
  4. 4.
    Somorjai GA, McCrea KR (2000) Sum frequency generation: surface vibrational spectroscopy studies of catalytic reactions on metal single-crystal surfaces. Adv Catal 45:385–483Google Scholar
  5. 5.
    Cant NW, Angove DE (1986) The origin of apparent deactivation during the oxidation of carbon monoxide over silica-supported platinum at moderate temperatures. J Catal 97(1):36–42CrossRefGoogle Scholar
  6. 6.
    Kummer JT (1986) Use of noble-metals in automobile exhaust catalysts. J Phys Chem 90(20):4747–4752CrossRefGoogle Scholar
  7. 7.
    Jones Z, Bennett RA, Bowker M (1999) CO oxidation on Pd(110): a high-resolution XPS and molecular beam study. Surf Sci 439(1–3):235–248CrossRefGoogle Scholar
  8. 8.
    Liu J, Xu M, Zaera F (1996) Determination of the rate limiting step in the oxidation of CO on Pt(111) surfaces. Catal Lett 37(1–2):9–13CrossRefGoogle Scholar
  9. 9.
    Schalow T, Brandt B, Laurin M, Schauermann S, Libuda J, Freund HJ (2006) CO oxidation on partially oxidized Pd nanoparticles. J Catal 242(1):58–70CrossRefGoogle Scholar
  10. 10.
    Penner S, Bera P, Pedersen S, Ngo LT, Harris JJW, Campbell CT (2006) Interactions of O2 with Pd nanoparticles on alpha-Al2O3(0001) at low and high O2 pressures. J Phys Chem 110(48):24577–24584CrossRefGoogle Scholar
  11. 11.
    Gabasch H, Knop-Gericke A, Schlogl R, Borasio M, Weilach C, Rupprechter G, Penner S, Jenewein B, Hayek K, Klotzer B (2007) Comparison of the reactivity of different Pd–O species in CO oxidation. Phys Chem Chem Phys 9(4):533–540CrossRefGoogle Scholar
  12. 12.
    Engel T, Ertl G (1979) Elementary steps in the catalytic oxidation of carbon monoxide on platinum metals. Adv Catal 28:1–78Google Scholar
  13. 13.
    Campbell CT, Ertl G, Kuipers H, Segner J (1980) A molecular-beam study of the catalytic-oxidation of CO on a Pt(111) surface. J Chem Phys 73(11):5862–5873CrossRefGoogle Scholar
  14. 14.
    Xu JZ, Yates JT (1993) Catalytic-oxidation of CO on Pt(335)—a study of the active-site. J Chem Phys 99(1):725–732CrossRefGoogle Scholar
  15. 15.
    Chen MS, Cai Y, Yan Z, Gath KK, Axnanda S, Goodman DW (2007) Highly active surfaces for CO oxidation on Rh, Pd, and Pt. Surf Sci 601(23):5326–5331CrossRefGoogle Scholar
  16. 16.
    Su XC, Cremer PS, Shen YR, Somorjai GA (1997) High-pressure CO oxidation on Pt(111) monitored with infrared-visible sum frequency generation (SFG). J Am Chem Soc 119(17):3994–4000CrossRefGoogle Scholar
  17. 17.
    Ackermann MD, Pedersen TM, Hendriksen BLM, Robach O, Bobaru SC, Popa I, Quiros C, Kim H, Hammer B, Ferrer S, Frenken JWM (2005) Structure and reactivity of surface oxides on Pt(110) during catalytic CO oxidation. Phys Rev Lett 95(25):255505CrossRefGoogle Scholar
  18. 18.
    Chen MS, Wang XV, Zhang LH, Tang ZY, Wan HL (2010) Active surfaces for CO oxidation on palladium in the hyperactive state. Langmuir 26(23):18113–18118CrossRefGoogle Scholar
  19. 19.
    Zhdanov VP, Kasemo B (1997) Kinetics of rapid heterogeneous reactions on the nanometer scale. J Catal 170(2):377–389CrossRefGoogle Scholar
  20. 20.
    Anderson JA (1991) CO oxidation on Rh/Al2O3 catalysts. J Chem Soc Faraday Trans 87(24):3907–3911CrossRefGoogle Scholar
  21. 21.
    Haruta M, Yamada N, Kobayashi T, Iijima S (1989) Au catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon-monoxide. J Catal 115(2):301–309CrossRefGoogle Scholar
  22. 22.
    Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281(5383):1647–1650CrossRefGoogle Scholar
  23. 23.
    Chen MS, Goodman DW (2004) The structure of catalytically active Au on titania. Science 306(5694):252–255CrossRefGoogle Scholar
  24. 24.
    Campbell CT (2004) The active site in nanoparticle Au catalysis. Science 306(5694):234–235CrossRefGoogle Scholar
  25. 25.
    Chen MS, Goodman DW (2006) Catalytically active gold: from nano-particles to ultra-thin films. Acc Chem Res 39(10):739–746CrossRefGoogle Scholar
  26. 26.
    Chen MS, Goodman DW (2006) Active structure of supported Au catalysts. Catal Today 111(1):22–33CrossRefGoogle Scholar
  27. 27.
    Gao F, Goodman DW (2012) Reaction kinetics and polarization modulation infrared reflection absorption spectroscopy investigations of CO oxidation over planar Pt-group model catalysts. Langmuir 26(21):16540–16551CrossRefGoogle Scholar
  28. 28.
    Gao F, Cai Y, Gath KK, Wang Y, Chen, Guo QL, Goodman DW (2009) CO oxidation on Pt-group metals from ultrahigh vacuum to near atmospheric pressures. 1. Rhodium. J Phys Chem C 113(1):182–192CrossRefGoogle Scholar
  29. 29.
    Gao F, Wang Y, Cai Y, Goodman DW (2009) CO oxidation on Pt-group metals from ultrahigh vacuum to near atmospheric pressures. 2. Palladium and platinum. J Phys Chem C 113(1):174–181CrossRefGoogle Scholar
  30. 30.
    Gao F, McClure SM, Cai Y, Gath KK, Wang Y, Chen MS, Guo QL, Goodman DW (2009) CO oxidation trends on Pt-group metals from ultrahigh vacuum to near atmospheric pressures: a combined in situ PM-IRAS and reaction kinetics study. Surf Sci 603(1):65–70CrossRefGoogle Scholar
  31. 31.
    Gao F, Wang Y, Goodman DW (2010) Reply to Comment on “CO oxidation on Pt group metals from ultrahigh vacuum to near atmospheric pressures II. Palladium and platinum”. J Phys Chem C 114(14):6874CrossRefGoogle Scholar
  32. 32.
    Gao F, McClure S, Chen MS, Goodman DW (2010) Comment on “Catalytic activity of the Rh surface oxide: CO oxidation over Rh(111) under realistic conditions”. J Phys Chem C 114(50):22369–22371CrossRefGoogle Scholar
  33. 33.
    Salmeron M, Brewer L, Somorjai GA (1981) The structure and stability of surface platinum oxide and of oxides of other noble-metals. Surf Sci 112(3):207–228CrossRefGoogle Scholar
  34. 34.
    Bennett RA, Poulston S, Jones IZ, Bowker M (1998) High-temperature scanning tunnelling microscopy studies of oxygen-induced reconstructions of Pd(110). Surf Sci 401(1):72–81CrossRefGoogle Scholar
  35. 35.
    Carlisle CI, Fujimoto T, Sim WS, King DA (2000) Atomic imaging of the transition between oxygen chemisorption and oxide film growth on Ag(111). Surf Sci 470(1–2):15–31CrossRefGoogle Scholar
  36. 36.
    Lundgren E, Kresse G, Klein C, Borg M, Andersen JN, Santis MD, Gauthier Y, Konvicka C, Schmid M, Varga P (2002) Two-dimensional oxide on Pd(111). Phys Rev Lett 88(24):246103CrossRefGoogle Scholar
  37. 37.
    Zheng G, Altman EI (2002) The oxidation mechanism of Pd(100). Surf Sci 504:253–270CrossRefGoogle Scholar
  38. 38.
    Chen MS, Santra AK, Goodman DW (2004) Structure of thin SiO2 films grown on Mo(112). Phys Rev B 69(15):155404CrossRefGoogle Scholar
  39. 39.
    Gustafson J, Mikkelsen A, Borg M, Andersen JN, Lundgren E, Klein C, Hofer W, Schmid M, Varga P, Kohler L, Kresse G, Kasper N, Stierle A, Dosch H (2005) Structure of a thin oxide film on Rh(100). Phys Rev B 71(11):115442CrossRefGoogle Scholar
  40. 40.
    Stierle A, Kasper N, Dosch H, Lundgren E, Gustafson J, Mikkelsen A, Andersen JN (2005) A surface X-ray study of the structure and morphology of the oxidized Pd(001) surface. J Chem Phys 122(4):044706CrossRefGoogle Scholar
  41. 41.
    Zemlyanov D, Aszalos-Kiss B, Kleimenov E, Teschner D, Zafeiratos S, Havecker M, Knop-Gericke A, Schlogl R, Gabasch H, Unterberger W, Hayek K, Koltzer B (2006) In-situ XPS study of Pd(111) oxidation. Part 1: 2D oxide formation in 10−3 mbar O2. Surf Sci 600(5):983–994CrossRefGoogle Scholar
  42. 42.
    Campbell CT (2006) Transition metal oxides: extra thermodynamic stability as thin films. Phys Rev Lett 96(6):066106CrossRefGoogle Scholar
  43. 43.
    Chen MS, Goodman DW (2006) The structure of monolayer SiO2 on Mo(112): a 2-D[Si–O–Si] network or isolated [SiO4] units? Surf Sci 600(19):L255–L259CrossRefGoogle Scholar
  44. 44.
    Chen MS, Goodman DW (2005) An investigation of the TiOx–SiO2/Mo(112) interface. Surf Sci 574(2–3):259–268CrossRefGoogle Scholar
  45. 45.
    Hendriksen BLM, Frenken JWM (2002) CO oxidation on Pt(110): scanning tunneling microscopy inside a high-pressure flow reactor. Phys Rev Lett 89(4):046101CrossRefGoogle Scholar
  46. 46.
    Chung JY, Aksoy F, Grass ME, Kondoh H, Ross JP, Liu Z, Mun BS (2009) In-situ study of the catalytic oxidation of CO on a Pt(110) surface using ambient pressure X-ray photoelectron spectroscopy. Surf Sci 603(5):L35–L38CrossRefGoogle Scholar
  47. 47.
    Gustafson J, Westerstroem R, Mikkelsen A, Torrelles X, Balmes O, Bovet N, Andersen JN, Baddeley CJ, Lundgren E (2008) Sensitivity of catalysis to surface structure: the example of CO oxidation on Rh under realistic conditions. Phys Rev B 78(4):045423CrossRefGoogle Scholar
  48. 48.
    Gustafson J, Westerstrom R, Balmes O, Resta A, van Rijn R, Torrelles X, Herbschleb CT, Frenken JWM, Lundgren E (2010) Catalytic activity of the Rh surface oxide: CO oxidation over Rh(111) under realistic conditions. J Phys Chem C 114(10):4580–4583CrossRefGoogle Scholar
  49. 49.
    Gustafson J, Westerstrom R, Resta A, Mikkelsen A, Andersen JN, Balmes O, Torrelles X, Schmid M, Varga P, Hammer B, Kresse G, Baddeley CJ, Lundgren E (2009) Structure and catalytic reactivity of Rh oxides. Catal Today 145(3–4):227–235CrossRefGoogle Scholar
  50. 50.
    van Rijn R, Balmes O, Resta A, Wermeille D, Westerstrom R, Gustafson J, Felici R, Lundgren E, Frenken JWM (2011) Surface structure and reactivity of Pd(100) during CO oxidation near ambient pressures. Phys Chem Chem Phys 13(29):13167–13171CrossRefGoogle Scholar
  51. 51.
    Hendriksen BLM, Ackermann MD, van Rijn R, Stoltz D, Popa I, Balmes O, Resta A, Wermeille D, Felici R, Ferrer S, Frenken JWM (2010) The role of steps in surface catalysis and reaction oscillations. Nat Mater 2(9):730–734Google Scholar
  52. 52.
    Nehasil V, Stará I, Matolín V (1996) Size effect study of carbon monoxide oxidation by Rh surfaces. Surf Sci 352:305–309CrossRefGoogle Scholar
  53. 53.
    Stará I, Nehasil V, Matolín V (1995) The influence of particle-size on CO oxidation on Pd alumina model catalyst. Surf Sci 331(1):173–177CrossRefGoogle Scholar
  54. 54.
    Matolin V, Gillet E (1986) The surface diffusion in CO oxidation on small supported Pd particles: experimental evidence. Surf Sci Lett 166(1):L115–L118Google Scholar
  55. 55.
    Christou SY, Efstathiou AM (2007) Effects of Pd particle size on the rates of oxygen back-spillover and CO oxidation under dynamic oxygen storage and release measurements over Pd/CeO2 catalysts. Top Catal 42–43(1–4):351–355CrossRefGoogle Scholar
  56. 56.
    Wang ZW, Li B, Chen MS, Weng WZ, Wan HL (2010) Size and support effects for CO oxidation on supported Pd catalysts. Sci China Chem 53(9):2047–2056CrossRefGoogle Scholar
  57. 57.
    Jin MS, Liu HY, Zhang H, Xie ZX, Liu JY, Xia YN (2011) Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes < 10 nm for application in CO oxidation. Nano Res 4(1):83–91CrossRefGoogle Scholar
  58. 58.
    Chen XN, Chen JY, Zhao Y, Chen MS, Wan HL (2012) Effect of dispersion on catalytic performance of supported Pt catalysts for CO oxidation. Chin J Catal 33(12):1901–1905CrossRefGoogle Scholar
  59. 59.
    Fu Q, Li WX, Yao YX, Liu HY, Su HY, Ma D, Gu XK, Chen LM, Wang Z, Zhang H, Wang B, Bao XH (2010) Interface-confined ferrous centers for catalytic oxidation. Science 328(5982):1141–1144CrossRefGoogle Scholar
  60. 60.
    Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316(5825):732–735CrossRefGoogle Scholar
  61. 61.
    Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science 299(5613):1688–1691CrossRefGoogle Scholar
  62. 62.
    Shaikhutdinov S, Freund H (2012) Ultrathin oxide films on metal supports: structure–reactivity relations. J Annu Rev Phys Chem 63:619–633CrossRefGoogle Scholar
  63. 63.
    Toyoshima R, Yoshida M, Monya Y, Suzuki K, Mun BS, Amemiya K, Mase K, Kondoh H (2012) Active surface oxygen for catalytic CO oxidation on Pd(100) proceeding under near ambient pressure conditions. J Phys Chem Lett 3(21):3182–3187CrossRefGoogle Scholar
  64. 64.
    Toyoshima R, Yoshida M, Monya Y, Kousa Y, Suzuki K, Abe H, Mun BS, Mase K, Amemiya K, Kondoh H (2012) In-situ ambient pressure XPS study of CO oxidation reaction on Pd(111) surfaces. J Phys Chem C 116(35):18691–18697CrossRefGoogle Scholar
  65. 65.
    Grass ME, Zhang YW, Butcher DR, Park JY, Li YM, Bluhm H, Bratlie KM, Zhang TF, Somorjai GA (2008) A reactive oxide overlayer on rhodium nanoparticles during CO oxidation and its size dependence studied by in situ ambient-pressure X-ray photoelectron spectroscopy. Angew Chem Int Ed 47(46):8893–8896CrossRefGoogle Scholar
  66. 66.
    Gustafson J, Mikkelsen A, Borg M, Lundgren E, Kohler L, Kresse G, Schmid M, Varga P, Yuhara J, Torrelles X, Quiros C, Andersen JN (2004) Self-limited growth of a thin oxide layer on Rh(111). Phys Rev Lett 92(12):126102CrossRefGoogle Scholar
  67. 67.
    Gustafson J, Westerstrom R, Balmes O, Resta A, van Rijn R, Torrelles X, Herbsehleb CT, Frenken JWM, Lundgren E (2010) Reply to “Comment on ‘Catalytic activity of the Rh surface oxide: CO oxidation over Rh(111) under realistic conditions’ ”. J Phys Chem C 114(50):22372–22373CrossRefGoogle Scholar
  68. 68.
    Alayon EMC, Singh J, Nachtegaal M, Harfouche M, van Bokhoven JA (2009) On highly active partially oxidized platinum in carbon monoxide oxidation over supported platinum catalysts. J Catal 263(2):228–238CrossRefGoogle Scholar
  69. 69.
    Ligthart DAJM, van Santen RA, Hensen EJM (2011) Supported rhodium oxide nanoparticles as highly active CO oxidation catalysts. Angew Chem Int Ed 50(23):5306–5310CrossRefGoogle Scholar
  70. 70.
    Singh J, van Bokhoven JA (2010) Structure of alumina supported platinum catalysts of different particle size during CO oxidation using in situ IR and HERFD XAS. Catal Today 155(3–4):199–205CrossRefGoogle Scholar
  71. 71.
    Singh J, Nachtegaal M, Alayon EMC, Stotzel J, van Bokhoven JA (2010) Dynamic structure changes of a heterogeneous catalyst within a reactor: oscillations in CO oxidation over a supported platinum catalyst. ChemCatChem 2(6):653–657CrossRefGoogle Scholar
  72. 72.
    Kliche G (1985) Far-infrared reflection spectra of PdO, PdS, PdSe and PtS. Infrared Phys 25(1–2):381–383CrossRefGoogle Scholar
  73. 73.
    McBride JR, Hass KC, Weber WH (1991) Resonance-Raman and lattice-dynamics studies of single-crystal PdO. Phys Rev B 44(10):5016–5028CrossRefGoogle Scholar
  74. 74.
    Frank M, Wolter K, Magg N, Heemeier M, Kuhnemuth R, Baumer M, Freund H (2001) Phonons of clean and metal-modified oxide films: an infrared and HREELS study. Surf Sci 492(3):270–284CrossRefGoogle Scholar
  75. 75.
    Imbihl R, Demuth JE (1986) Adsorption of oxygen on a Pd(111) surface studied by high resolution electron energy loss spectroscopy (EELS). Surf Sci 173(2–3):395–410CrossRefGoogle Scholar
  76. 76.
    Stuve EM, Madix RJ (1984) CO oxidation on Pd(100): a study of the coadsorption of oxygen and carbon monoxide. Surf Sci 146(1):155–178CrossRefGoogle Scholar
  77. 77.
    Hinojosa JA, Kan HH, Weaver JF (2008) Molecular chemisorption of O2 on a PdO(101) thin film on Pd(111). J Phys Chem C 112(22):8324–8331CrossRefGoogle Scholar
  78. 78.
    Kostelník P, Seriani N, Kresse G, Mikkelsen A, Lundgren E, Blum V, Šikola T, Varga P, Schmid M (2007) The Pd(100)–(5 × 5)R27° surface oxide: a LEED, DFT and STM study. Surf Sci 601(6):1574–1581CrossRefGoogle Scholar
  79. 79.
    Zheng G, Altman EI (2000) The oxidation of Pd(111). Surf Sci 462(1–3):151–168CrossRefGoogle Scholar
  80. 80.
    Chen MS et al (unpublished data)Google Scholar
  81. 81.
    Deshlahra P, Pfeifer K, Bernstein GH, Wolf EE (2011) CO adsorption and oxidation studies on nanofabricated model catalysts using multilayer enhanced IRAS technique. Appl Catal A 391(1–2):22–30CrossRefGoogle Scholar
  82. 82.
    van Rijn R, Balmes O, Felici R, Gustafson J, Wermeille D, Westerström R, Lundgren E, Frenken JWM (2010) Comment on “CO oxidation on Pt-group metals from ultrahigh vacuum to near atmospheric pressures. 2. Palladium and platinum”. J Phys Chem C 114(14):6875–6876CrossRefGoogle Scholar
  83. 83.
    Engel T, Ertl G (1978) A molecular beam investigation of the catalytic oxidation of carbon monoxide on palladium(111). J Chem Phys 69(3):1267–1281CrossRefGoogle Scholar
  84. 84.
    Goodman DW, Peden CHF (1986) Carbon monoxide oxidation over rhodium and ruthenium: a comparative study. J Phys Chem 90(20):4839–4843CrossRefGoogle Scholar
  85. 85.
    Xu X, Goodman DW (1993) An infrared and kinetic study of carbon monoxide oxidation on model silica-supported palladium catalysts from 10−9 to 15 Torr. J Phys Chem 97(29):7711–7718CrossRefGoogle Scholar
  86. 86.
    Xu M, Liu J, Zaera F (1996) Kinetic evidence for the dependence of surface reaction rates on the distribution of reactants on the surface. J Chem Phys 104(21):8825–8828CrossRefGoogle Scholar
  87. 87.
    Zaera F, Liu J, Xu M (1997) Isothermal study of the kinetics of carbon monoxide oxidation on Pt(111): rate dependence on surface coverages. J Chem Phys 106(10):4204–4215CrossRefGoogle Scholar
  88. 88.
    Zheng G, Altman EI (2002) The reactivity of surface oxygen phases on Pd(100) toward reduction by CO. J Phys Chem B 106(5):1048–1057CrossRefGoogle Scholar
  89. 89.
    Gerrard AL, Weaver JF (2005) Kinetics of CO oxidation on high-concentration phases of atomic oxygen on Pt(111). J Chem Phys 123(22):224703CrossRefGoogle Scholar
  90. 90.
    Butcher DR, Grass ME, Zeng ZH, Aksoy F, Bluhm H, Li WX, Mun BS, Somorjai GA, Liu Z (2011) In-situ oxidation study of Pt(110) and its interaction with CO. J Am Chem Soc 133(50):20319–20325CrossRefGoogle Scholar
  91. 91.
    Huang WX, Zhai RS, Bao XH (2000) Investigation of oxygen adsorption on Pd(100) with defects. Appl Surf Sci 158(3–4):287–291CrossRefGoogle Scholar
  92. 92.
    Shumbera RB, Kan HH, Weaver JF (2007) Oxidation of Pt(100)-hex-R0.7 degrees by gas-phase oxygen atoms. Surf Sci 601(1):235–246CrossRefGoogle Scholar
  93. 93.
    Stierle A (2009) Oxidation of palladium: from single crystal surfaces towards nanoparticles. Int J Mater Res 100(10):1308–1317CrossRefGoogle Scholar
  94. 94.
    Westerstroem R, Weststrate CJ, Gustafson J, Mikkelsen A, Schnadt J, Andersen JN, Lundgren E, Seriani N, Mittendorfer F, Kresse G, Stierle A (2009) Lack of surface oxide layers and facile bulk oxide formation on Pd(110). Phys Rev B 80(12):12543Google Scholar
  95. 95.
    Krasnikov SA, Murphy S, Berdunov N, McCoy AP, Radican K, Shvets IV (2010) Self-limited growth of triangular PtO2 nanoclusters on the Pt(111) surface. Nanotechnology 21(33):335301CrossRefGoogle Scholar
  96. 96.
    Becker U, Shirley DA (1996) VUV and soft X-ray photoionization. Plenum, New YorkCrossRefGoogle Scholar
  97. 97.
    Hanley L, Guo XC, Yates JT (1989) Photolysis of chemisorbed dioxygen on Pd(111)—dependence on photon energy. J Chem Phys 91(11):7220–7227CrossRefGoogle Scholar
  98. 98.
    White JM (1998) Using photons and electrons to drive surface chemical reactions. J Mol Catal A 131(1–3):71–90CrossRefGoogle Scholar
  99. 99.
    Sato H (2001) Photodissociation of simple molecules in the gas phase. Chem Rev 101(9):2687–2725CrossRefGoogle Scholar
  100. 100.
    Ho W (1994) Surface photochemistry. Surf Sci 299(1–3):996–1007CrossRefGoogle Scholar
  101. 101.
    Butler LJ, Neumark DM (1996) Photodissociation dynamics. J Phys Chem 100(31):12801–12816CrossRefGoogle Scholar
  102. 102.
    Tripa CE, Arumaninayagam CR, Yates JT (1996) Kinetics measurements of CO photo-oxidation on Pt(111). J Chem Phys 105(4):1691–1696CrossRefGoogle Scholar
  103. 103.
    Hasselbrink E, Hirayama H, Demeijere A, Weik F, Wolf M, Ertl G (1992) Photodissociation and photodesorption of O2 adsorbed on Pd(111). Surf Sci 269:235–246CrossRefGoogle Scholar
  104. 104.
    Riedel D, Perdigao LMA, Hernandez-Pozos JL, Guo Q, Palmer RE, Foord JS, Kolasinski KW (2002) Surface photochemistry induced by ultrafast pulses of vacuum ultraviolet light: physisorbed oxygen on graphite. Phys Rev B 66(23):233405CrossRefGoogle Scholar
  105. 105.
    Lu Y, He ZX, Cutler JN, Southworth SH, Stolte WC, Samson JAR (1998) Dissociative photoionization study of O2. J Electron Spectrosc Relat Phenom 94(1–2):135–147CrossRefGoogle Scholar
  106. 106.
    Lin JJ, Hwang DW, Lee YT, Yang XM (1998) Photodissociation of O2 at 157 nm: experimental observation of anisotropy mixing in the O2 + hv → O(3P) + O(3P) channel. J Chem Phys 109(5):1758–1762CrossRefGoogle Scholar
  107. 107.
    Tonokura K, Shafer N, Matsumi Y, Kawasaki M (1991) Photodissociation of oxygen molecules at 226 nm in the Herzberg I system. J Chem Phys 95(5):3394–3398CrossRefGoogle Scholar
  108. 108.
    Wills AA, Cafolla AA, Comer J (1991) The production of autoionizing states of atomic oxygen by the photodissociation of O2. J Phys B 24(18):3989–4000CrossRefGoogle Scholar
  109. 109.
    Meng Y, Von Dreele RB, Toby BH, Chow P, Hu MY, Shen GY, Mao HK (2006) Hard X-ray radiation induced dissociation of N2 and O2 molecules and the formation of ionic nitrogen oxide phases under pressure. Phys Rev B 74(21):214107CrossRefGoogle Scholar
  110. 110.
    Sorokin AA, Bobashev SV, Tiedtke K, Richter M (2006) Multi-photon ionization of molecular nitrogen by femtosecond soft X-ray FEL pulses. J Phys B 39(14):L299–L304CrossRefGoogle Scholar
  111. 111.
    Kim YS, Bostwick A, Rotenberg E, Ross PN, Hong SC, Mun BS (2010) The study of oxygen molecules on Pt(111) surface with high resolution X-ray photoemission spectroscopy. J Chem Phys 133(3):034501CrossRefGoogle Scholar
  112. 112.
    Weng WZ, Wan HL, Li JM, Cao ZX (2004) Laser-induced formation of metal–peroxide linkages on the surface of lanthanum sesquioxide under. Angew Chem Int Ed 43(8):975–977CrossRefGoogle Scholar
  113. 113.
    Miller DJ, Oberg H, Kaya S, Casalongue HS, Friebel D, Anniyev T, Ogasawara H, Bluhm H, Pettersson LGM, Nilsson A (2011) Oxidation of Pt(111) under near-ambient conditions. Phys Rev Lett 107(19):195502CrossRefGoogle Scholar
  114. 114.
    Dumbuya K, Cabailh G, Lazzari R, Jupille J, Ringel L, Pistor M, Lytken O, Steinruck HP, Gottfried JM (2012) Evidence for an active oxygen species on Au/TiO2(110) model catalysts during investigation with in situ X-ray photoelectron spectroscopy. Catal Today 181(1):20–25CrossRefGoogle Scholar
  115. 115.
    Seader JD, Henley EJ (1998) Separation process principles. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina

Personalised recommendations