Topics in Catalysis

, Volume 56, Issue 18–20, pp 1782–1789 | Cite as

Vapor Phase Ketonization of Acetic Acid on Ceria Based Metal Oxides

  • Changjun Liu
  • Ayman M. Karim
  • Vanessa M. Lebarbier
  • Donghai Mei
  • Yong Wang
Original Paper


The activities of CeO2, Mn2O3–CeO2 and ZrO2–CeO2 were measured for acetic acid ketonization under reaction conditions relevant to pyrolysis vapor upgrading. We show that the catalyst ranking changed depending on the reaction conditions. Mn2O3–CeO2 was the most active catalyst at 350 °C, while ZrO2–CeO2 was the most active catalyst at 450 °C. Under high CO2 and steam concentration in the reactants, Mn2O3–CeO2 was the most active catalyst at 350 and 450 °C. The binding energies of steam and CO2 with the active phase were calculated to provide the insight into the tolerance of Mn2O3–CeO2 to steam and CO2.


Bio-oil upgrading Vapor phase ketonization Metal oxides Acid base catalyst Ceria Density functional theory 



We gratefully acknowledge the financial support from the National Advanced Biofuels Consortium (NABC) which is funded by the Department of Energy’s Office of Biomass Program with recovery act funds. Part of the research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL).


  1. 1.
    Blin J, Volle G, Girard P, Bridgwater T, Meier D (2007) Fuel 86:2679–2686CrossRefGoogle Scholar
  2. 2.
    Bridgwater AV (2012) Biomass Bioenergy 38:68–94CrossRefGoogle Scholar
  3. 3.
    Bridgwater AV (1996) Catal Today 29:285–295CrossRefGoogle Scholar
  4. 4.
    Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044–4098CrossRefGoogle Scholar
  5. 5.
    Bridgwater AV (2011) In: Brown RC (ed) Thermochemical processing of biomass: conversion into fuels, chemicals and power. John Wiley & Sons, Ltd, New YorkGoogle Scholar
  6. 6.
    Diebold JP (2000) in, National Renewable Energy Laboratory, 2000, Access 20 Dec 2012
  7. 7.
    Oasmaa A, Kuoppala E, Solantausta Y (2003) Energy and Fuels 17:433–443CrossRefGoogle Scholar
  8. 8.
    Branca C, Giudicianni P, Di Blasi C (2003) Ind Eng Chem Res 42:3190–3202CrossRefGoogle Scholar
  9. 9.
    Kuriacose JC, Swaminathan R (1969) J Catal 14:348–354CrossRefGoogle Scholar
  10. 10.
    Swaminathan R, Kuriacose JC (1970) J Catal 16:357–362CrossRefGoogle Scholar
  11. 11.
    Akashi T, Sato S, Takahashi R, Sodesawa T, Inui K (2003) Catal Commun 4:411–416CrossRefGoogle Scholar
  12. 12.
    Jayamani M, Pillai CN (1984) J Catal 87:93–97CrossRefGoogle Scholar
  13. 13.
    Pestman R, Koster RM, van Duijne A, Pieterse JAZ, Ponec V (1997) J Catal 168:265–272CrossRefGoogle Scholar
  14. 14.
    Martinez R, Huff MC, Barteau MA (2004) J Catal 222:404–409CrossRefGoogle Scholar
  15. 15.
    Parida K, Mishra HK (1999) J Mol Catal A: Chem 139:73–80CrossRefGoogle Scholar
  16. 16.
    Gliński M, Kijeński J (2000) Appl Catal A 190:87–91CrossRefGoogle Scholar
  17. 17.
    Gliński M, Kijeński J, Jakubowski A (1995) Appl Catal A 128:209–217CrossRefGoogle Scholar
  18. 18.
    Stubenrauch J, Brosha E, Vohs JM (1996) Catal Today 28:431–441CrossRefGoogle Scholar
  19. 19.
    Randery SD, Warren JS, Dooley KM (2002) Appl Catal A 226:265–280CrossRefGoogle Scholar
  20. 20.
    Hendren TS, Dooley KM (2003) Catal Today 85:333–351CrossRefGoogle Scholar
  21. 21.
    Gliński M, Kijeński J (2000) React Kinet Catal Lett 69:123–128CrossRefGoogle Scholar
  22. 22.
    Cutrufello MG, Ferino I, Solinas V, Primavera A, Trovarelli A, Auroux A, Picciau C (1999) Phys Chem Chem Phys 1:3369–3375CrossRefGoogle Scholar
  23. 23.
    Cutrufello MG, Ferino I, Monaci R, Rombi E, Solinas V (2002) Top Catal 19:225–240CrossRefGoogle Scholar
  24. 24.
    Gangadharan A, Shen M, Sooknoi T, Resasco DE, Mallinson RG (2010) Appl Catal A 385:80–91CrossRefGoogle Scholar
  25. 25.
    Gärtner CA, Serrano-Ruiz JC, Braden DJ, Dumesic JA (2009) Chemsuschem 2:1121–1124CrossRefGoogle Scholar
  26. 26.
    Gärtner CA, Serrano-Ruiz JC, Braden DJ, Dumesic JA (2009) J Catal 266:71–78CrossRefGoogle Scholar
  27. 27.
    Nagashima O, Sato S, Takahashi R, Sodesawa T (2005) J Mol Catal A: Chem 227:231–239CrossRefGoogle Scholar
  28. 28.
    Tanabe K, Yamaguchi T (1994) Catal Today 20:185–197CrossRefGoogle Scholar
  29. 29.
    Hasan MA, Zaki MI, Pasupulety L (2003) Appl Catal A 243:81–92CrossRefGoogle Scholar
  30. 30.
    Renz M (2005) Eur J Org Chem 2005:979–988CrossRefGoogle Scholar
  31. 31.
    Yamada Y, Segawa M, Sato F, Kojima T, Sato S (2011) J Mol Catal A: Chem 346:79–86CrossRefGoogle Scholar
  32. 32.
    Sato S, Koizumi K, Nozaki F (1998) J Catal 178:264–274CrossRefGoogle Scholar
  33. 33.
    Kresse G, Furthmuller J (1996) Comput Mater Sci 6:15–50CrossRefGoogle Scholar
  34. 34.
    Kresse G, Furthmuller J (1996) Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  35. 35.
    Blöchl PE (1994) Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  36. 36.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  37. 37.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687CrossRefGoogle Scholar
  38. 38.
    Mei DH, Deskins NA, Dupuis M (2007) Surf Sci 601:4993–5001CrossRefGoogle Scholar
  39. 39.
    Mei D, Deskins NA, Dupuis M, Ge QF (2008) J Phys Chem C 112:4257–4266CrossRefGoogle Scholar
  40. 40.
    Mei D, Deskins NA, Dupuis M, Ge Q (2007) J Phys Chem C 111:10514–10522CrossRefGoogle Scholar
  41. 41.
    Machida M, Uto M, Kurogi D, Kijima T (2000) Chem Mater 12:3158–3164CrossRefGoogle Scholar
  42. 42.
    Nakajima T, Nameta H, Mishima S, Matsuzaki I, Tanabe K (1994) J Mater Chem 4:853–858CrossRefGoogle Scholar
  43. 43.
    De Bruijn TJW, Soerawidjaja TH, De Jongt WA, Van Den Berg PJ (1980) Chem Eng Sci 35:1591–1599CrossRefGoogle Scholar
  44. 44.
    Nakano Y, Iizuka T, Hattori H, Tanabe K (1979) J Catal 57:1–10CrossRefGoogle Scholar
  45. 45.
    Pokrovski K, Jung KT, Bell AT (2001) Langmuir 17:4297–4303CrossRefGoogle Scholar
  46. 46.
    Bachiller-Baeza B, Rodriguez-Ramos I, Guerrero-Ruiz A (1998) Langmuir 14:3556–3564CrossRefGoogle Scholar
  47. 47.
    Tai J, Davis RJ (2007) Catal Today 123:42–49CrossRefGoogle Scholar
  48. 48.
    Yang Z, Wang Q, Wei S, Ma D, Sun Q (2010) J Phys Chem C 114:14891–14899CrossRefGoogle Scholar
  49. 49.
    Kumar S (2006) J Chem Phys 125:204704CrossRefGoogle Scholar
  50. 50.
    Fronzi M, Piccinin S, Delley B, Traversa E, Stampfl C (2009) Phys Chem Chem Phys 11:9188–9199CrossRefGoogle Scholar
  51. 51.
    Gritschneder S, Iwasawa Y, Reichling M (2007) Nanotechnology 18:044025CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.The Gene and Linda Voiland School of Chemical Engineering and BioengineeringWashington State UniversityPullmanUSA
  2. 2.Institute for Integrated CatalysisPacific Northwest National LaboratoryRichlandUSA

Personalised recommendations