Topics in Catalysis

, Volume 56, Issue 18–20, pp 1651–1659 | Cite as

Ethanol Steam Reforming on Co/CeO2: The Effect of ZnO Promoter

  • Stephen Davidson
  • Junming Sun
  • Yong Wang
Original Paper


A series of ZnO promoted Co/CeO2 catalysts were synthesized and characterized using XRD, TEM, H2-TPR, CO chemisorption, O2-TPO, IR-Py, and CO2-TPD. The effects of ZnO on the catalytic performances of Co/CeO2 were studied in ethanol steam reforming. It was found that the addition of ZnO facilitated the oxidation of Co0 via enhanced oxygen mobility of the CeO2 support which decreased the activity of Co/CeO2 in C–C bond cleavage of ethanol. 3 wt% ZnO promoted Co/CeO2 exhibited minimum CO and CH4 selectivity and maximum CO2 selectivity. This resulted from the combined effects of the following factors with increasing ZnO loading: (1) enhanced oxygen mobility of CeO2 facilitated the oxidation of CH x and CO to form CO2; (2) increased ZnO coverage on CeO2 surface reduced the interaction between CH x /CO and Co/CeO2; and (3) suppressed CO adsorption on Co0 reduced CO oxidation rate to form CO2. In addition, the addition of ZnO also modified the surface acidity and basicity of CeO2, which consequently affected the C2–C4 product distributions.


Ethanol steam reforming Hydrogen Cobalt CeO2 ZnO promoter 



We acknowledge the financial support from the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, the WSU Franceschi Microscopy Center and Dr. Knoblauch for use of the TEM, and the WSU GeoAnalytical Lab and Dr. Rowe for use of the XRD. S.D. thanks Feng Gao and Yilin Wang for many helpful discussions in the early stage of this work.

Supplementary material

11244_2013_103_MOESM1_ESM.docx (346 kb)
Supplementary material 1 (DOCX 346 kb)


  1. 1.
    Armor JN (1999) Appl Catal A 176:159–176CrossRefGoogle Scholar
  2. 2.
    Bshish A, Yakoob Z, Narayanan B, Ramakrishnan R, Ebshish A (2011) Chem Pap 65:251–266CrossRefGoogle Scholar
  3. 3.
    Hernández L, Kafarov V (2009) Int J Hydrogen Energy 34:7041–7050CrossRefGoogle Scholar
  4. 4.
    Mattos LV, Jacobs G, Davis BH, Noronha FB (2012) Chem Rev 112:4094–4123CrossRefGoogle Scholar
  5. 5.
    Ni M, Leung DYC, Leung MKH (2007) Int J Hydrogen Energy 32:3238–3247CrossRefGoogle Scholar
  6. 6.
    Xuan J, Leung MKH, Leung DYC, Ni M (2009) Renew Sustain Energy Rev 13:1301–1313CrossRefGoogle Scholar
  7. 7.
    Wei ZH, Sun JM, Li Y, Datye AK, Wang Y (2012) Chem Soc Rev 41:7994–8008CrossRefGoogle Scholar
  8. 8.
    Duan S, Senkan S (2005) Ind Eng Chem Res 44:6381–6386CrossRefGoogle Scholar
  9. 9.
    Karim AM, Su Y, Sun JM, Yang C, Strohm JJ, King DL, Wang Y (2010) Appl Catal B-Environ 96:441–448CrossRefGoogle Scholar
  10. 10.
    Choong CKS, Zhong Z, Huang L, Wang Z, Ang TP, Borgna A, Lin J, Hong L, Chen L (2011) Appl Catal A 407:145–154CrossRefGoogle Scholar
  11. 11.
    Sun J, Qiu X-P, Wu F, Zhu W-T (2005) Int J Hydrogen Energy 30:437–445CrossRefGoogle Scholar
  12. 12.
    Zhang B, Tang X, Li Y, Xu Y, Shen W (2007) Int J Hydrogen Energy 32:2367–2373CrossRefGoogle Scholar
  13. 13.
    Padilla R, Benito M, Rodríguez L, Serrano A, Muñoz G, Daza L (2010) Int J Hydrogen Energy 35:8921–8928CrossRefGoogle Scholar
  14. 14.
    Zhang B, Tang X, Li Y, Cai W, Xu Y, Shen W (2006) Catal Commun 7:367–372CrossRefGoogle Scholar
  15. 15.
    Banach B, Machocki A, Rybak P, Denis A, Grzegorczyk W, Gac W (2011) Catal Today 176:28–35CrossRefGoogle Scholar
  16. 16.
    Barton DG, Soled SL, Iglesia E (1998) Top Catal 6:87–99CrossRefGoogle Scholar
  17. 17.
    Batista MS, Santos RKS, Assaf EM, Assaf JM, Ticianelli EA (2003) J Power Sources 124:99–103CrossRefGoogle Scholar
  18. 18.
    Llorca J, Homs Ns, Sales J, de la Piscina PRr (2002) J Catal 209:306–317Google Scholar
  19. 19.
    Haga F, Nakajima T, Miya H, Mishima S (1997) Catal Lett 48:223–227CrossRefGoogle Scholar
  20. 20.
    Song H, Zhang LZ, Watson RB, Braden D, Ozkan US (2007) Catal Today 129:346–354CrossRefGoogle Scholar
  21. 21.
    Song H, Zhang LZ, Ozkan US (2010) Ind Eng Chem Res 49:8984–8989CrossRefGoogle Scholar
  22. 22.
    Song H, Ozkan US (2009) J Catal 261:66–74CrossRefGoogle Scholar
  23. 23.
    Song H, Ozkan US (2009) J Phys Chem A 114:3796–3801CrossRefGoogle Scholar
  24. 24.
    Lin SSY, Kim DH, Ha SY (2009) Appl Catal a-Gen 355:69–77CrossRefGoogle Scholar
  25. 25.
    Martono E, Hyman MP, Vohs JM (2011) Phys Chem Chem Phys 13:9880–9886CrossRefGoogle Scholar
  26. 26.
    Martono E, Vohs JM (2011) ACS Catal 1:1414–1420CrossRefGoogle Scholar
  27. 27.
    Martono E, Vohs JM (2012) J Catal 291:79–86CrossRefGoogle Scholar
  28. 28.
    Hyman MP, Vohs JM (2011) Surf Sci 605:383–389CrossRefGoogle Scholar
  29. 29.
    Karim AM, Su Y, Engelhard MH, King DL, Wang Y (2011) ACS Catal 1:279–286CrossRefGoogle Scholar
  30. 30.
    Lebarbier VM, Karim AM, Engelhard MH, Wu Y, Xu B-Q, Petersen EJ, Datye AK, Wang Y (2011) ChemSusChem 4:1679–1684CrossRefGoogle Scholar
  31. 31.
    Yue WB, Zhou WZ (2007) J Mater Chem 17:4947–4952CrossRefGoogle Scholar
  32. 32.
    Mishra BG, Rao GR (2006) J Mol Catal a-Chem 243:204–213CrossRefGoogle Scholar
  33. 33.
    Duclere JR, Doggett B, Henry MO, McGlynn E, Kumar RTR, Mosnier JP, Perrin A, Guilloux-Viry M (2007) J Appl Phys 101Google Scholar
  34. 34.
    O’Shea VAD, Homs N, Pereira EB, Nafria R, de la Piscina PR (2007) Catal Today 126:148–152CrossRefGoogle Scholar
  35. 35.
    Khodakov AY, Griboval-Constant A, Bechara R, Zholobenko VL (2002) J Catal 206:230–241CrossRefGoogle Scholar
  36. 36.
    Laguna OH, Centeno MA, Romero-Sarria F, Odriozola JA (2011) Catal Today 172:118–123CrossRefGoogle Scholar
  37. 37.
    He Z, Yang M, Wang X, Zhao Z, Duan A (2012) Catal Today 194:2–8CrossRefGoogle Scholar
  38. 38.
    Moura JS, Souza MOG, Bellido JDA, Assaf EM, Opportus M, Reyes P, Rangel MdC (2012) Int J Hydrogen Energy 37:3213–3224CrossRefGoogle Scholar
  39. 39.
    Zhong Z, Ang H, Choong C, Chen L, Huang L, Lin J (2009) Phys Chem Chem Phys 11:872–880CrossRefGoogle Scholar
  40. 40.
    Song H, Bao X, Hadad CM, Ozkan US (2011) Catal Lett 141:43–54CrossRefGoogle Scholar
  41. 41.
    Hayashi F, Iwamoto M (2013) ACS Catal: 14–17Google Scholar
  42. 42.
    Sun J, Zhu K, Gao F, Wang C, Liu J, Peden CHF, Wang Y (2011) J Am Chem Soc 133:11096–11099CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Voiland School of Chemical Engineering and BioengineeringWashington State UniversityPullmanUSA
  2. 2.Institute for Integrated CatalysisPacific Northwest National LaboratoryRichlandUSA

Personalised recommendations