Topics in Catalysis

, Volume 56, Issue 18–20, pp 1644–1650 | Cite as

Comparison of Ethylene Glycol Steam Reforming Over Pt and NiPt Catalysts on Various Supports

Original Paper


Steam reforming of ethylene glycol (EG) was studied on Pt and NiPt catalysts supported on γ-Al2O3, TiO2, and carbon. On all supports bimetallic NiPt catalysts show higher activity for H2 production than the corresponding Pt catalysts as predicted from model surface science studies. The kinetic trends are similar for all catalysts (Pt and NiPt) with the H2 production rate being zero-order and fractional order with respect to water and ethylene glycol, respectively. Slight differences in selectivity to minor products are observed depending both on active metal and support. On γ-Al2O3, NiPt shows higher H2 and less alkane formation than Pt. TiO2 supported catalysts show increased water-gas shift activity but also increased selectivity to alkane precursors. NiPt/C is identified as an active and selective catalyst for EG reforming.


NiPt Ethylene glycol Supported catalysts Steam reforming Bimetallics 



This work was supported from the Catalysis Center for Energy Innovation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001004.


  1. 1.
    Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA (2005) Appl Catal B 56:171–186CrossRefGoogle Scholar
  2. 2.
    Holladay JD, Hu J, King DL, Wang Y (2009) Catal Today 139:244–260CrossRefGoogle Scholar
  3. 3.
    Christiansen MA, Vlachos DG (2012) Appl Catal A 431–432:18–24CrossRefGoogle Scholar
  4. 4.
    Salciccioli M, Vlachos DG (2011) ACS Catal 1:1246–1256CrossRefGoogle Scholar
  5. 5.
    Salciccioli M, Yu WT, Barteau MA, Chen JG, Vlachos DG (2011) J Am Chem Soc 133:7996–8004CrossRefGoogle Scholar
  6. 6.
    Skoplyak O, Barteau MA, Chen JG (2008) ChemSusChem 1:524–526CrossRefGoogle Scholar
  7. 7.
    Skoplyak O, Barteau MA, Chen JG (2008) Surf Sci 602:3578–3587CrossRefGoogle Scholar
  8. 8.
    Skoplyak O, Barteau MA, Chen JG (2006) J Phys Chem B 110:1686–1694CrossRefGoogle Scholar
  9. 9.
    Yu W, Porosoff MD, Chen JG (2012) Chem Rev 112:5780–5817CrossRefGoogle Scholar
  10. 10.
    He R, Davda RR, Dumesic JA (2005) J Phys Chem B 109:2810–2820CrossRefGoogle Scholar
  11. 11.
    Kandoi S, Greeley J, Simonetti D, Shabaker J, Dumesic JA, Mavrikakis M (2011) ). J Phys Chem C 115:961–971CrossRefGoogle Scholar
  12. 12.
    Li SR, Zhang CX, Zhang P, Wu GW, Ma XB, Gong JL (2012) Phys Chem Chem Phys 14:4066–4069CrossRefGoogle Scholar
  13. 13.
    Dauenhauer PJ, Salge JR, Schmidt LD (2006) J Catal 244:238–247CrossRefGoogle Scholar
  14. 14.
    Ciftci A, Peng B, Jentys A, Lercher JA, Hensen EJM (2012) Appl Catal A 431–432:113–119CrossRefGoogle Scholar
  15. 15.
    Dietrich P, Lobo-Lapidus R, Wu T, Sumer A, Akatay M, Fingland B, Guo N, Dumesic J, Marshall C, Stach E, Jellinek J, Delgass W, Ribeiro F, Miller J (2012) Top Catal 55:53–69CrossRefGoogle Scholar
  16. 16.
    Huber GW, Shabaker JW, Evans ST, Dumesic JA (2006) Appl Catal B 62:226–235CrossRefGoogle Scholar
  17. 17.
    King DL, Zhang LA, Xia G, Karim AM, Heldebrant DJ, Wang XQ, Peterson T, Wang Y (2010) Appl Catal B 99:206–213CrossRefGoogle Scholar
  18. 18.
    Ravenelle RM, Copeland JR, Kim WG, Crittenden JC, Sievers C (2011) ACS Catal 1:552–561CrossRefGoogle Scholar
  19. 19.
    Shabaker JW, Huber GW, Davda RR, Cortright RD, Dumesic JA (2003) Catal Lett 88:1–8CrossRefGoogle Scholar
  20. 20.
    Shabaker JW, Davda RR, Huber GW, Cortright RD, Dumesic JA (2003) J Catal 215:344–352CrossRefGoogle Scholar
  21. 21.
    Liu J, Sun B, Hu JY, Pei Y, Li HX, Qiao MH (2010) J Catal 274:287–295CrossRefGoogle Scholar
  22. 22.
    Ji N, Zhang T, Zheng MY, Wang AQ, Wang H, Wang XD, Chen JG (2008) Angew Chem Int Ed 47:8510–8513CrossRefGoogle Scholar
  23. 23.
    Yue HR, Zhao YJ, Ma XB, Gong JL (2012) Chem Soc Rev 41:4218–4244CrossRefGoogle Scholar
  24. 24.
    Lonergan WW, Vlachos DG, Chen JG (2010) J Catal 271:239–250CrossRefGoogle Scholar
  25. 25.
    Tupy SA, Karim AM, Bagia C, Deng W, Huang Y, Vlachos DG, Chen JG (2012) ACS Catal 2:2290–2296CrossRefGoogle Scholar
  26. 26.
    de Vlieger DJM, Mojet BL, Lefferts L, Seshan K (2012) J Catal 292:239–245CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular Engineering, Catalysis Center for Energy InnovationUniversity of DelawareNewarkUSA

Personalised recommendations