Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A First-Principles Study of the Role of Quaternary-N Doping on the Oxygen Reduction Reaction Activity and Selectivity of Graphene Edge Sites


Density functional theory (DFT) was used to investigate O2 chemisorption on the edge sites of graphene doped with quaternary nitrogen (N-graphene). The location of the doped quaternary N within the graphene cluster was systematically varied to determine the effect of interior versus edge doping on the reactivity of the edge graphene sites. Model 1b, where a quaternary-N atom is at the zigzag edge of the graphene cluster, is found to be the most favored structure and strongly adsorbs O2 molecule via a “two feet” geometry. For this most stable O2 binding configuration, the potential-dependent free energy of reaction for the subsequent oxygen reduction reaction (ORR) steps was evaluated. The favored four electron-proton transfer mechanism passes through a dissociative O*+OH* state instead of an OOH* intermediate, followed by a series of reduction steps to produce water. At the equilibrium potential for ORR of 1.23 V-NHE, the protonation of O* and OH* both show uphill steps, but the production of O* is facile with a small overpotential. An applied potential of −0.15 V-NHE is required to facilitate the protonation of OH* to water, a larger overpotential than observed experimentally. While solvent effects may reduce this overpotential, our results suggest that the edge of the N-graphene is very active towards activation of O2 and production of O* and OH* but because of strong binding of the oxygen atom, the subsequent steps of the ORR reaction will be hindered. Mechanisms that have OH* formed at the edge site and then move to adjacent sites for more facile protonation will have to be explored in the future.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1


  1. 1.

    Steele BCH, Heinzel A (2001) Nature 414(6861):345–352

  2. 2.

    Yu X, Ye S (2007) J Power Sources 172(1):145–154

  3. 3.

    Winter M, Brodd RJ (2004) Chem Rev 104(10):4245–4270

  4. 4.

    Jasinski R (1964) Nature 201(4925):1212–1213

  5. 5.

    Bashyam R, Zelenay P (2006) Nature 443(7107):63–66

  6. 6.

    Lefèvre M, Proietti E, Jaouen F, Dodelet J-P (2009) Science 324(5923):71–74

  7. 7.

    Matter PH, Zhang L, Ozkan US (2006) J Catal 239(1):83–96

  8. 8.

    Matter PH, Wang E, Arias M, Biddinger EJ, Ozkan US (2006) J Phys Chem B 110(37):18374–18384

  9. 9.

    Matter PH, Wang E, Millet J-MM, Ozkan US (2007) J Phys Chem C 111(3):1444–1450

  10. 10.

    Matter PH, Wang E, Arias M, Biddinger EJ, Ozkan US (2007) J Mol Catal A Chem 264(1–2):73–81

  11. 11.

    Matter PH, Wang E, Ozkan US (2006) J Catal 243(2):395–403

  12. 12.

    Biddinger E, von Deak D, Ozkan U (2009) Top Catal 52(11):1566–1574

  13. 13.

    Liu R, Wu D, Feng X, Müllen K (2010) Angew Chem 122(14):2619–2623

  14. 14.

    Wiggins-Camacho JD, Stevenson KJ (2009) J Phys Chem C 113(44):19082–19090

  15. 15.

    Shao Y, Sui J, Yin G, Gao Y (2008) Appl Catal B-Environ 79(1):89–99

  16. 16.

    Maruyama J, Fukui N, Kawaguchi M, Abe I (2009) J Power Sources 194(2):655–661

  17. 17.

    Jahnke H, Schönborn M, Zimmermann G (1976) Physical and chemical applications of dyestuffs. Springer, Berlin, pp 133–181

  18. 18.

    van Veen JAR, van Baar JF, Kroese CJ, Coolegem JGF, De Wit N, Colijn HA (1981) Ber Bunsenges Phys Chem 85(9):693–700

  19. 19.

    Scherson D, Tanaka AA, Gupta SL, Tryk D, Fierro C, Holze R, Yeager EB, Lattimer RP (1986) Electrochim Acta 31(10):1247–1258

  20. 20.

    Faubert G, Côté R, Guay D, Dodelet JP, Dénès G, Bertrandc P (1998) Electrochim Acta 43(3–4):341–353

  21. 21.

    Bron M, Fiechter S, Hilgendorff M, Bogdanoff P (2002) J Appl Electrochem 32(2):211–216

  22. 22.

    Bouwkamp-Wijnoltz AL, Visscher W, van Veen JAR, Boellaard E, van der Kraan AM, Tang SC (2002) J Phys Chem B 106(50):12993–13001

  23. 23.

    Gouérec P, Biloul A, Contamin O, Scarbeck G, Savy M, Riga J, Weng LT, Bertrand P (1997) J Electroanal Chem 422(1–2):61–75

  24. 24.

    Gouérec P, Bilou A, Contamin O, Scarbeck G, Savy M, Barbe JM, Guilard R (1995) J Electroanal Chem 398(1–2):67–75

  25. 25.

    Gruenig G, Wiesener K, Gamburzev S, Iliev I, Kaisheva A (1983) J Electroanal Chem 159(1):155–162

  26. 26.

    Fournier J, Lalande G, Côté R, Guay D, Dodelet JP (1997) J Electrochem Soc 144(1):218–226

  27. 27.

    Gupta S, Tryk D, Bae I, Aldred W, Yeager E (1989) J Appl Electrochem 19(1):19–27

  28. 28.

    Faubert G, Côté R, Guay D, Dodelet JP, Dénès G, Poleunis C, Bertrand P (1998) Electrochim Acta 43(14–15):1969–1984

  29. 29.

    Faubert G, Côté R, Dodelet JP, Lefèvre M, Bertrand P (1999) Electrochim Acta 44(15):2589–2603

  30. 30.

    Lefèvre M, Dodelet JP, Bertrand P (2000) J Phys Chem B 104(47):11238–11247

  31. 31.

    Cote R, Lalande G, Faubert G, Guay D, Dodelet J, Denes G (1998) J New Mat Elect Syst 1(1):7–16

  32. 32.

    Wang H, Côté R, Faubert G, Guay D, Dodelet JP (1999) J Phys Chem B 103(12):2042–2049

  33. 33.

    Lefèvre M, Dodelet J-P (2008) Electrochim Acta 53(28):8269–8276

  34. 34.

    Charreteur F, Jaouen F, Ruggeri S, Dodelet J-P (2008) Electrochim Acta 53(6):2925–2938

  35. 35.

    Ruggeri S, Dodelet J-P (2007) J Electrochem Soc 154(8):B761–B769

  36. 36.

    Jaouen F, Lefèvre M, Dodelet J-P, Cai M (2006) J Phys Chem B 110(11):5553–5558

  37. 37.

    Jaouen F, Charreteur F, Dodelet JP (2006) J Electrochem Soc 153(4):A689–A698

  38. 38.

    Charreteur F, Ruggeri S, Jaouen F, Dodelet JP (2008) Electrochim Acta 53(23):6881–6889

  39. 39.

    Nallathambi V, Lee J-W, Kumaraguru SP, Wu G, Popov BN (2008) J Power Sources 183(1):34–42

  40. 40.

    Iwazaki T, Obinata R, Sugimoto W, Takasu Y (2009) Electrochem Commun 11(2):376–378

  41. 41.

    Iwazaki T, Yang H, Obinata R, Sugimoto W, Takasu Y (2010) J Power Sources 195(18):5840–5847

  42. 42.

    Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Science 323(5915):760–764

  43. 43.

    Matter P, Ozkan U (2006) Catal Lett 109(3):115–123

  44. 44.

    Subramanian NP, Li X, Nallathambi V, Kumaraguru SP, Colon-Mercado H, Wu G, Lee J-W, Popov BN (2009) J Power Sources 188(1):38–44

  45. 45.

    Niwa H, Horiba K, Harada Y, Oshima M, Ikeda T, Terakura K, Ozaki J-i, Miyata S (2009) J Power Sources 187(1):93–97

  46. 46.

    Biddinger EJ, Ozkan US (2010) J Phys Chem C 114(36):15306–15314

  47. 47.

    Sidik RA, Anderson AB, Subramanian NP, Kumaraguru SP, Popov BN (2006) J Phys Chem B 110(4):1787–1793

  48. 48.

    Kurak KA, Anderson AB (2009) J Phys Chem C 113(16):6730–6734

  49. 49.

    Ikeda T, Boero M, Huang S-F, Terakura K, Oshima M, Ozaki J-i (2008) J Phys Chem C 112(38):14706–14709

  50. 50.

    Huang S-F, Terakura K, Ozaki T, Ikeda T, Boero M, Oshima M, Ozaki J-i, Miyata S (2009) Phys Rev B 80(23):235410

  51. 51.

    Jiang D-e, Dai S (2007) J Phys Chem A 112(2):332–335

  52. 52.

    Becke AD (1993) J Chem Phys 98(7):5648–5652

  53. 53.

    Lee C, Yang W, Parr RG (1988) Phys Rev B 37(2):785–789

  54. 54.

    Scott AP, Radom L (1996) J Phys Chem 100(41):16502–16513

  55. 55.

    Frisch MJ, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Montgomery J, Vreven T, Kudin K, Burant J (2008) Gaussian 03, revision C. 02

  56. 56.

    Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) J Phys Chem B 108(46):17886–17892

  57. 57.

    Dathar GKP, Shelton WA, Xu Y (2012) J Phys Chem Lett 3(7):891–895

  58. 58.

    Yu L, Pan X, Cao X, Hu P, Bao X (2011) J Catal 282(1):183–190

  59. 59.

    Zhang L, Niu J, Dai L, Xia Z (2012) Langmuir 28(19):7542–7550

  60. 60.

    Zhang L, Xia Z (2011) J Phys Chem C 115(22):11170–11176

  61. 61.

    Kim H, Lee K, Woo SI, Jung Y (2011) Phys Chem Chem Phys 13(39):17505–17510

  62. 62.

    Boukhvalov DW, Son YW (2012) Nanoscale 4(2):417–420

  63. 63.

    Qu L, Liu Y, Baek J-B, Dai L (2010) ACS Nano 4(3):1321–1326

  64. 64.

    Yu D, Zhang Q, Dai L (2010) J Am Chem Soc 132(43):15127–15129

Download references


The authors gratefully acknowledge financial support from the U.S. Department of Energy-Basic Energy Sciences (DE-FG02-07ER15896). The Ohio Supercomputer Center (OSC) is also acknowledged for generous computational support of this research.

Author information

Correspondence to Aravind Asthagiri or Umit S. Ozkan or Christopher M. Hadad.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bao, X., Nie, X., von Deak, D. et al. A First-Principles Study of the Role of Quaternary-N Doping on the Oxygen Reduction Reaction Activity and Selectivity of Graphene Edge Sites. Top Catal 56, 1623–1633 (2013). https://doi.org/10.1007/s11244-013-0097-z

Download citation


  • Oxygen reduction of graphene
  • Oxygen reduction reaction
  • O2 chemisorption
  • N-graphene
  • Edge sites
  • Density functional theory