Advertisement

Topics in Catalysis

, Volume 56, Issue 13–14, pp 1253–1261 | Cite as

Hydrogenation Processes at the Surface of Ruthenium Nanoparticles: A NMR Study

  • I. Favier
  • P. Lavedan
  • S. Massou
  • E. Teuma
  • K. Philippot
  • B. Chaudret
  • M. GómezEmail author
Original Paper

Abstract

The reactivity of ruthenium nanoparticles stabilized by 4-(3-phenylpropyl)pyridine in hydrogen transfer and hydrogenation processes was monitored by NMR spectroscopy. Unsaturated substrates such as styrene, 4-vinylpyridine and 4-phenyl-but-3-en-2-one were used as model molecules to investigate the surface properties of nanoparticles by a combination of NMR studies. Interestingly, the hydrides present at the metallic surface after nanoparticles synthesis are selectively transferred to vinylic groups without reducing the aromatic rings, under dihydrogen-free atmosphere. DOSY and NOE NMR experiments permitted to propose a way of interaction of the organic compounds at the metallic surface. In particular, the coordination of the substrate could be evidenced for 4-vinylpyridine and 4-ethylpyridine but not for styrene derivatives.

Graphical Abstract

Curved double arrows represent magnetization exchanges. Straight arrows represent adsorption/desorption phenomena.

Keywords

Ruthenium Nanoparticles Surface reactivity DOSY NMR NOE effects Hydrogen transfer Hydrogenation Arenes 

Notes

Acknowledgments

This work was financially supported by the Centre National de la Recherche Scientifique (CNRS), the Université Paul Sabatier and the Institut de Chimie de Toulouse. I.F. and P.L. are grateful to the Université Paul Sabatier for a funded project (AO1 2012).

Supplementary material

11244_2013_92_MOESM1_ESM.doc (968 kb)
Supplementary material 1 (DOC 968 kb)

References

  1. 1.
    Bell AT (2003) Science 299:1688CrossRefGoogle Scholar
  2. 2.
    Scott SL, Crudden CM, Jones CW (eds) (2003) Nanostructured catalysts. Kluwer/Plenum, New YorkGoogle Scholar
  3. 3.
    Zhou B, Hermans S, Somorjai G (eds) (2004) Nanotechnology in catalysis. Kluwer/Plenum, New YorkGoogle Scholar
  4. 4.
    Heiz U, Landman U (eds) (2007) Nanocatalysis. Springer, BerlinGoogle Scholar
  5. 5.
    Astruc D (ed) (2008) Nanoparticles and catalysis. Wiley–VCH, WeinheimGoogle Scholar
  6. 6.
    Philippot K, Serp P (eds) (2013) Nanomaterials in catalysis. Wiley–VCH, WeinheimGoogle Scholar
  7. 7.
    Semagina N, Kiwi-Minsker L (2009) Catal Rev 51:47CrossRefGoogle Scholar
  8. 8.
    Favier I, Madec D, Teuma E, Gómez M (2011) Curr Org Chem 15:3127CrossRefGoogle Scholar
  9. 9.
    An K, Alayoglu S, Ewers T, Somorjai GA (2012) J Colloid Interf Sci 373:1CrossRefGoogle Scholar
  10. 10.
    Jansat S, Gómez M, Philippot K, Muller G, Guiu E, Claver C, Castillón S, Chaudret B (2004) J Am Chem Soc 126:1592CrossRefGoogle Scholar
  11. 11.
    Favier I, Gómez M, Muller G, Axet R, Castillón S, Claver C, Jansat S, Chaudret B, Philippot K (2007) Adv Synth Catal 349:2459CrossRefGoogle Scholar
  12. 12.
    Durand J, Teuma, E, Gómez, M (2008) Eur J Inorg Chem 3577Google Scholar
  13. 13.
    Favier I, Teuma E, Gómez M (2009) CR Chim 12:533CrossRefGoogle Scholar
  14. 14.
    Lara P, Philippot K, Chaudret B (2013) Chem Cat Chem 5:28Google Scholar
  15. 15.
    Favier I, Massou S, Teuma E, Philippot K, Chaudret B, Gómez M (2008) Chem Commun 28:3296CrossRefGoogle Scholar
  16. 16.
    Castillejos E, Debouttière P-J, Roiban L, Solhy A, Martinez V, Kihn Y, Ersen O, Philippot K, Chaudret B, Serp P (2009) Angew Chem Int Ed 48:2529CrossRefGoogle Scholar
  17. 17.
    Jahjah M, Kihn Y, Teuma E, Gómez M (2010) J Mol Catal A 332:106CrossRefGoogle Scholar
  18. 18.
    Rodríguez-Pérez L, Pradel C, Serp P, Gómez M, Teuma E (2011) Chem Cat Chem 3:749Google Scholar
  19. 19.
    García-Suárez EJ, Tristany M, García AB, Collière V, Philippot K (2012) Micropor Mesopor Mat 153:155CrossRefGoogle Scholar
  20. 20.
    Weitz DA, Huang JS, Lin MY, Sung J (1985) Phys Rev Lett 54:1416CrossRefGoogle Scholar
  21. 21.
    Widegren JA, Finke RG (2003) J Mol Catal A 191(2):187CrossRefGoogle Scholar
  22. 22.
    Roucoux A, Schulz J (2002) Patin H Chem Rev 102:3757CrossRefGoogle Scholar
  23. 23.
    Delbecq F, Loffreda D, Sautet P (2010) J Phys Chem Lett 1:323CrossRefGoogle Scholar
  24. 24.
    Johnson CS (1999) Progr Nucl Magn Reson Spectrosc 34:203CrossRefGoogle Scholar
  25. 25.
    Price WS (1997) Concepts Magn Reson 9:299CrossRefGoogle Scholar
  26. 26.
    Price WS (1998) Concepts Magn Reson 10:197CrossRefGoogle Scholar
  27. 27.
    Stejskal EO, Tanner JT (1965) J Chem Phys 42:288CrossRefGoogle Scholar
  28. 28.
    Wilder G, Dotch V, Wuthrich K (1994) J Magn Reson (A) 108:255CrossRefGoogle Scholar
  29. 29.
    Delsuc MA, Malliavin TE (1998) Anal Chem 70:2146CrossRefGoogle Scholar
  30. 30.
    Neuhaus D, Williamson MP (2000) The nuclear overhauser effect in structural and conformational analysis, 2nd edn. Wiley–VCH, New YorkGoogle Scholar
  31. 31.
    Fritzinger B (2009) J Am Chem Soc 131:3024CrossRefGoogle Scholar
  32. 32.
    Stott K, Keeler J, Van QN, Shaka AJ (1997) J Magn Reson 125:302CrossRefGoogle Scholar
  33. 33.
    Garcia-Anton J, Axet MR, Jansat S, Philippot K, Chaudret B, Pery T, Buntkowsky G, Limbach HH (2008) Angew Chem Int Ed 47:2074CrossRefGoogle Scholar
  34. 34.
    Bera T, Thybaut JW, Marin GB (2012) ACS Catal 2:1305CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • I. Favier
    • 1
  • P. Lavedan
    • 2
  • S. Massou
    • 3
  • E. Teuma
    • 1
  • K. Philippot
    • 4
    • 5
  • B. Chaudret
    • 6
  • M. Gómez
    • 1
    Email author
  1. 1.Laboratoire Hétérochimie Fondamentale et Appliquée, UMR CNRS 5069Université Paul SabatierToulouse Cedex 9France
  2. 2.Service Commun RMN, ICTUniversité Paul SabatierToulouse Cedex 9France
  3. 3.Laboratoire d’Ingénierie des Systèmes—Bioprocédés, UMR 5504 INSA, CNRS, UMR 792 INSA, INRAToulouse Cedex 04France
  4. 4.LCC (Laboratoire de Chimie de Coordination), CNRSToulouseFrance
  5. 5.LCC, INPT, UPS, Université de ToulouseToulouseFrance
  6. 6.Laboratoire de Physique Et Chimie de Nano-Objets (LPCNO)ToulouseFrance

Personalised recommendations