Topics in Catalysis

, Volume 56, Issue 12, pp 1059–1064 | Cite as

Enhanced Oxygen Reduction Activity of IrCu Core Platinum Monolayer Shell Nano-electrocatalysts

  • YongMan Choi
  • Kurian A. Kuttiyiel
  • Joselito P. Labis
  • Kotaro Sasaki
  • Gu-Gon Park
  • Tae-Hyun Yang
  • Radoslav R. Adzic


Designing novel cathode materials for a proton exchange membrane fuel cell with high activity for the oxygen reduction reaction, low Pt loading, and enhanced long-term stability is imperative for its sustainability. To date, Pt monolayer based electrocatalysts deposited on a metallic core substrate have shown promising possibilities. In this study, we synthesized bimetallic IrCu nanoparticles and used them as a core for Pt monolayer electrocatalysts. It was found that the de-alloyed IrCu nanoparticle surfaces increased both the mass and specific activities of the resulting Pt monolayer catalyst. In addition, we demonstrated that Pt monolayer electrocatalysts with a de-alloyed IrCu core have a better stability than those using a non-dealloyed core based on a 5,000 potential cycling test. These data describe a new simple synthesis of a high-performance catalyst suitable for practical applications.


Fuel cells Electrocatalysis Core–shell catalyst Pt monolayer Cu underpotential deposition Oxygen reduction 



This research was performed at Brookhaven National laboratory under contract DE-AC02-98CH10886 with the US Department of Energy, Division of Chemical Sciences, Geosciences and Biosciences Division. This work was conducted under the framework of Research and Development Program of the Korea Institute of Energy Research (KIER) (B3-2415). Y.C. truly acknowledges the kind support by Drs. Hicham Idriss and Essam H. Jamea to carry out this project in Brookhaven National Laboratory. Also, Y.C. thanks Dr. Toseef N. Ahmed and Hugh Issacs and Wei-Fu Chen for SEM/EDX measurements and fruitful discussion on electrochemistry, respectively.


  1. 1.
    Steele BCH, Heinzel A (2001) Nature 414:345CrossRefGoogle Scholar
  2. 2.
    Adzic RR (1998) In: Lipkowski J, Ross P (eds) Electrocatalysis. Wiley, New York, p 197Google Scholar
  3. 3.
    Kuttiyiel KA, Sasaki K, Choi Y, Su D, Liu P, Adzic RR (2012) Energy Environ Sci 5:5297CrossRefGoogle Scholar
  4. 4.
    Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Appl Catal B Environ 56:9CrossRefGoogle Scholar
  5. 5.
    Vukmirovic MB, Bliznakov ST, Sasaki K, Wang JX, Adzic RR (2011) Electrochem Soc Interface 20:33Google Scholar
  6. 6.
    Kohn W, Sham LJ (1965) Phys Rev B 140:A1133CrossRefGoogle Scholar
  7. 7.
    Kresse G, Hafner J (1993) Phys Rev. B 47:558CrossRefGoogle Scholar
  8. 8.
    Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Nat Chem 1:37CrossRefGoogle Scholar
  9. 9.
    Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) J Phys Chem B 108:17886CrossRefGoogle Scholar
  10. 10.
    Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C, Liu Z, Kaya S, Nordlund D, Ogasawara H, Toney MF, Nilsson A (2010) Nat Chem 2:454CrossRefGoogle Scholar
  11. 11.
    Wang JX, Inada H, Wu L, Zhu Y, Choi Y, Liu P, Zhou W-P, Adzic RR (2009) J Am Chem Soc 131:17298CrossRefGoogle Scholar
  12. 12.
    Wang JX, Ma C, Choi Y, Su D, Zhu Y, Liu P, Si R, Vukmirovic MB, Zhang Y, Adzic RR (2011) J Am Chem Soc 133:13551CrossRefGoogle Scholar
  13. 13.
    Zhang J, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Angew Chem Int Ed 44:2132CrossRefGoogle Scholar
  14. 14.
    Kuttiyiel KA, Sasaki K, Choi Y, Su D, Liu P, Adzic RR (2012) Nano Lett 12:6266CrossRefGoogle Scholar
  15. 15.
    Adzic R, Zhang J, Sasaki K, Vukmirovic M, Shao M, Wang J, Nilekar A, Mavrikakis M, Valerio J, Uribe F (2007) Top Catal 46:249CrossRefGoogle Scholar
  16. 16.
    Sasaki K, Naohara H, Cai Y, Choi YM, Liu P, Vukmirovic MB, Wang JX, Adzic RR (2010) Angew Chem. Int. Ed. 49:8602CrossRefGoogle Scholar
  17. 17.
    Gong K, Choi Y, Vukmirovic MB, Liu P, Ma C, Su D, Adzic RR (2012) Z Phys Chem 226:1025CrossRefGoogle Scholar
  18. 18.
    Sasaki K, Naohara H, Choi Y, Cai Y, Chen W-F, Liu P, Adzic RR (2012) Nat Commun 3:1115CrossRefGoogle Scholar
  19. 19.
    Sasaki K, Kuttiyiel K, Su D, Adzic R (2011) Electrocatalysis 2:134CrossRefGoogle Scholar
  20. 20.
    Sasaki K, Kuttiyiel KA, Barrio L, Su D, Frenkel AI, Marinkovic N, Mahajan D, Adzic RR (2011) J Phys Chem C 115:9894CrossRefGoogle Scholar
  21. 21.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York, p 114–115Google Scholar
  22. 22.
    Scientific Group Thermodata Europe (SGTE), Franke P, Neuschütz D, Cu–Ir (Copper–Iridium). Franke P, Neuschütz D (eds). Springer Materials: the Landolt-Börnstein Database. doi: 10.1007/978-3-540-45280-5_55, Accessed 2 Jan 2012
  23. 23.
    Cullity BD, Stock SR (2001) Elements of X-Ray Diffraction Prentice-Hall Inc., New YorkGoogle Scholar
  24. 24.
    Shao M, Shoemaker K, Peles A, Kaneko K, Protsailo L (2010) J Am Chem Soc 132:9253CrossRefGoogle Scholar
  25. 25.
    Miki A, Ye S, Osawa M (2002) Chem Commun 1500Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • YongMan Choi
    • 1
    • 2
  • Kurian A. Kuttiyiel
    • 2
  • Joselito P. Labis
    • 3
  • Kotaro Sasaki
    • 2
  • Gu-Gon Park
    • 4
  • Tae-Hyun Yang
    • 4
  • Radoslav R. Adzic
    • 2
  1. 1.SABIC Technology CenterRiyadhSaudi Arabia
  2. 2.Chemistry DepartmentBrookhaven National LaboratoryUptonUSA
  3. 3.King Abdullah Institute for NanotechnologyKing Saud UniversityRiyadhSaudi Arabia
  4. 4.Fuel Cell Research CenterKorea Institute of Energy ResearchDaejeonKorea

Personalised recommendations