Advertisement

Topics in Catalysis

, Volume 56, Issue 11, pp 923–932 | Cite as

Chiral Ionic Liquid/ESI-MS Methodology as an Efficient Tool for the Study of Transformations of Supported Organocatalysts

  • S. G. Zlotin
  • A. S. Kuherenko
  • O. V. Maltsev
  • A. O. Chizhov
Original Paper

Abstract

An efficient approach to the study of deactivation pathways of chiral organocatalysts in asymmetric Michael reactions by modifying original catalysts with ionic-liquid fragments followed by the electrospray ionization mass spectrometry analysis of recovered catalyst samples has been proposed.

Keywords

Organocatalysis Asymmetric synthesis Supported organocatalysts Ionic liquids Mass-spectrometry 

Notes

Acknowledgments

Financial supports by the President of the Russian Federation (grant for young Ph.D. No. 3551.2012.3), by the Russian Academy of Sciences (Basic Research Program No. 1 of the DCMS) and by the Russian Foundation of Basic Research (project 12-03-00420) are gratefully acknowledged.

References

  1. 1.
    Dalko PI (ed) (2007) Enantioselective organocatalysis: reactions and experimental procedures. Wiley-VCH, WeinheimGoogle Scholar
  2. 2.
    List B, Maruoka K (eds) (2012) Asymmetric organocatalysis. Georg Thieme Verlag KG, Stuttgard, NYGoogle Scholar
  3. 3.
    Berkessel A, Groger H (2005) Asymmetric organocatalysis: from biomimetic concepts to application in asymmetric synthesis. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  4. 4.
    de Figueiredo RM, Christmann M (2007) Organocatalytic synthesis of drugs and bioactive natural products. Eur J Org Chem 2575–2600 Google Scholar
  5. 5.
    Marqués-López E, Herrera RP, Christmann M (2010) Asymmetric organocatalysis in total synthesis—a trial by fire. Nat Prod Rep 27:1138–1167CrossRefGoogle Scholar
  6. 6.
    Eder U, Sauer GR, Wiechart R (1971) Ger Pat DE 2014757Google Scholar
  7. 7.
    Hajos ZG, Parrish DR (1971) Ger Pat DE 2102623Google Scholar
  8. 8.
    List B, Lerner RA, Barbas CF III (2000) Proline-catalyzed direct asymmetric aldol reactions. J Am Chem Soc 122:2395–2396CrossRefGoogle Scholar
  9. 9.
    Mlynarski J, Gut B (2012) Organocatalytic synthesis of carbohydrates. Chem Soc Rev 41:587–596CrossRefGoogle Scholar
  10. 10.
    Wong OA, Shi Y (2008) Organocatalytic oxidation. Asymmetric epoxidation of olefins catalyzed by chiral ketones and iminium salts. Chem Rev 108:3958–3987CrossRefGoogle Scholar
  11. 11.
    Ahrendt KA, Borths CJ, MacMillan DWC (2000) New strategies for organic catalysis: the first highly enantioselective organocatalytic Diels-Alder reaction. J Am Chem Soc 122:4243–4244CrossRefGoogle Scholar
  12. 12.
    Takemoto Y (2010) Development of chiral thiourea catalysts and its application to asymmetric catalytic reactions. Chem Pharm Bull 58:593–601CrossRefGoogle Scholar
  13. 13.
    Chen XH, Yu Y, Gong LZ (2010) The role of double hydrogen bonds in asymmetric direct aldol reactions catalyzed by amino amide derivatives. Chem Commun 46:6437–6448CrossRefGoogle Scholar
  14. 14.
    Akiyama A (2007) Stronger Brønsted acids. Chem Rev 107:5744–5758CrossRefGoogle Scholar
  15. 15.
    Terada M (2008) Binaphthol-derived phosphoric acid as a versatile catalyst for enantioselective carbon–carbon bond forming reactions. Chem Commun 4097–4112Google Scholar
  16. 16.
    Berkessel A, Koch B, Lex J (2004) Proline-derived N-sulfonylcarboxamides: readily available, highly enantioselective and versatile catalysts for direct aldol reactions. Adv Synth Catal 346:1141–1146CrossRefGoogle Scholar
  17. 17.
    Cobb AJA, Shaw DM, Longbottom DA, Gold JB, Ley SV (2005) Organocatalysis with proline derivatives: improved catalysts for the asymmetric Mannich, nitro-Michael and aldol reactions. Org Biomol Chem 3:84–96CrossRefGoogle Scholar
  18. 18.
    Yang H, Carter RG (2010) Proline sulfonamide based organocatalysis: better late than never. Synlett 2827–2838Google Scholar
  19. 19.
    Jensen KL, Dickmeiss G, Jiang H, Albrecht Ł, Jørgensen KA (2012) The diarylprolinol silyl ether system: a general organocatalyst. Acc Chem Res 45:248–264CrossRefGoogle Scholar
  20. 20.
    Hayashi Y, Gotoh H, Hayashi T, Shoji M (2005) Diphenylprolinol silyl ethers as efficient organocatalysts for the asymmetric Michael reaction of aldehydes and nitroalkenes. Angew Chem Int Ed 44:4212–4215CrossRefGoogle Scholar
  21. 21.
    Connon SJ (2008) Asymmetric catalysis with bifunctional cinchona alkaloid-based urea and thiourea organocatalysts. Chem Commun 2499–2510Google Scholar
  22. 22.
    Vakulya B, Varga S, Csámpai A, Soós T (2005) Highly enantioselective conjugate addition of nitromethane to chalcones using bifunctional cinchona organocatalysts. Org Lett 7:1967–1969CrossRefGoogle Scholar
  23. 23.
    Li BJ, Jiang L, Liu M, Chen YC, Ding LS, Wu Y (2005) Asymmetric Michael addition of Arylthiols to α,β-unsaturated carbonyl compounds catalyzed by bifunctional organocatalysts. Synlett 603–606Google Scholar
  24. 24.
    Ye J, Dixon DJ, Hynes PS (2005) Enantioselective organocatalytic Michael addition of malonate esters to nitro olefins using bifunctional cinchonine derivatives. Chem Commun 4481–4483Google Scholar
  25. 25.
    Malerich JP, Hagihara K, Rawal VH (2008) Chiral Squaramide derivatives are excellent hydrogen bond donor catalysts. J Am Chem Soc 130:14416–14417CrossRefGoogle Scholar
  26. 26.
    Alemán J, Parra A, Jiang H, Jørgensen KA (2011) Squaramides: bridging from molecular recognition to bifunctional organocatalysis. Chem Eur J 17:6890–6899CrossRefGoogle Scholar
  27. 27.
    Mukherjee S, Yang JW, Hoffman S, List B (2007) Asymmetric enamine catalysis. Chem Rev 107:5471–5569CrossRefGoogle Scholar
  28. 28.
    Erkkilä A, Majander I, Pihko PM (2007) Iminium catalysis. Chem Rev 107:5416–5470CrossRefGoogle Scholar
  29. 29.
    Doyle AG, Jacobsen EN (2007) Small-molecule H-bond donors in asymmetric catalysis. Chem Rev 107:5713–5743CrossRefGoogle Scholar
  30. 30.
    Marcus Y, Hefter G (2006) Ion pairing. Chem Rev 106:4585–4621CrossRefGoogle Scholar
  31. 31.
    Zlotin SG, Kucherenko AS, Beletskaya IP (2009) Organic catalysis of asymmetric aldol reaction. Catalysts and reagents. Russ Chem Rev 78:737–784CrossRefGoogle Scholar
  32. 32.
    Trost BM, Brindle CS (2010) The direct catalytic asymmetric aldol reaction. Chem Soc Rev 39:1600–1632CrossRefGoogle Scholar
  33. 33.
    Almaşi D, Alonso DA, Nájera C (2007) Organocatalytic asymmetric conjugate additions. Tetrahedron Asymmetry 18:299–365CrossRefGoogle Scholar
  34. 34.
    Csákÿ AG, de la Herrán G, Murcia MC (2010) Conjugate addition reactions of carbon nucleophiles to electron-deficient dienes. Chem Soc Rev 39:4080–4102CrossRefGoogle Scholar
  35. 35.
    Terrasson V, de Figueiredo RM, Campagne JM (2010) Organocatalyzed asymmetric Friedel–Crafts reactions. Eur J Org Chem 2635–2655Google Scholar
  36. 36.
    Ting A, Schaus SE (2007) Organocatalytic asymmetric Mannich reactions: new methodology, catalyst design, and synthetic applications. Eur J Org Chem 5797–5815Google Scholar
  37. 37.
    Verkade JMM, van Hemert LJC, Quaedfliegb PJLM, Rutjes FPJT (2008) Organocatalysed asymmetric Mannich reactions. Chem Soc Rev 37:29–41CrossRefGoogle Scholar
  38. 38.
    Merino P, Marqués-Lόpez E, Tejero T, Herrera RP (2010) Enantioselective organocatalytic Diels–Alder reactions. Synthesis 1–26Google Scholar
  39. 39.
    Moyano A, Rios R (2011) Asymmetric organocatalytic cyclization and cycloaddition reactions. Chem Rev 111:4703–4832CrossRefGoogle Scholar
  40. 40.
    Pellissier H (2012) Asymmetric organocatalytic cycloadditions. Tetrahedron 68:2197–2232CrossRefGoogle Scholar
  41. 41.
    Rueping M, Dufour J, Schoepke FR (2011) Advances in catalytic metal-free reductions: from bio-inspired concepts to applications in the organocatalytic synthesis of pharmaceuticals and natural products. Green Chem 13:1084–1105CrossRefGoogle Scholar
  42. 42.
    Zheng C, You SL (2012) Transfer hydrogenation with Hantzsch esters and related organic hydride donors. Chem Soc Rev 41:2498–2518CrossRefGoogle Scholar
  43. 43.
    Russo A, De Fusco C, Lattanzi A (2012) Enantioselective organocatalytic α-heterofunctionalization of active methines. RSC Adv 2:385–397CrossRefGoogle Scholar
  44. 44.
    Song CE (2005) Immobilisation of chiral catalysts: easy recycling of catalyst and improvement of catalytic efficiencies. Annu Rep Prog Chem Sect C 101:143–173CrossRefGoogle Scholar
  45. 45.
    Trindade AF, Gois PMP, Afonso CAM (2009) Recyclable stereoselective catalysts. Chem Rev 109:418–514CrossRefGoogle Scholar
  46. 46.
    Kristensen TE, Hansen T (2010) Polymer-supported chiral organocatalysts: synthetic strategies for the road towards affordable polymeric immobilization. Eur J Org Chem 3179–3204Google Scholar
  47. 47.
    Itsuno S, Parvez M, Haraguchi N (2011) Polymeric chiral organocatalysts. Polym Chem 2:1942–1949CrossRefGoogle Scholar
  48. 48.
    Winkel A, Reddy PVG, Wilhelm R (2008) Recent advances in the synthesis and application of chiral ionic liquids. Synthesis 999–1016Google Scholar
  49. 49.
    Luo S, Zhang L, Cheng JP (2009) Functionalized chiral ionic liquids: a new type of asymmetric organocatalysts and nonclassical chiral ligands. Chem Asian J 4:1184–1195CrossRefGoogle Scholar
  50. 50.
    Zlotin SG, Makhova NN (2010) Ionic liquids as substrate-specific recoverable solvents and catalysts of regio-, stereo- and enantioselective organic reactions. Mendeleev Commun 20:63–71CrossRefGoogle Scholar
  51. 51.
    Ni B, Headley AD (2010) Ionic-liquid-supported (ILS) catalysts for asymmetric organic synthesis. Chem Eur J 16:4426–4436CrossRefGoogle Scholar
  52. 52.
    Röben C, Stasiak M, Janza B, Greiner A, Wendorff JH, Studer A (2008) Immobilization of oligostyrene-prolinol conjugates into polystyrene via electrospinning and applications of these fibers in catalysis. Synthesis 2163–2168Google Scholar
  53. 53.
    Varela MC, Dixon SM, Lam KS, Schore NE (2008) Asymmetric epoxidation, Michael addition, and triple cascade reaction using polymer-supported prolinol-based auxiliaries. Tetrahedron 64:10087–10090CrossRefGoogle Scholar
  54. 54.
    Alza E, Pericàs MA (2009) A highly selective, polymer-supported organocatalyst for Michael additions with enzyme-like behavior. Adv Synth Catal 351:3051–3056CrossRefGoogle Scholar
  55. 55.
    Kristensen TE, Vestli K, Jakobsen MG, Hansen FK, Hansen T (2010) A general approach for preparation of polymer-supported chiral organocatalysts via acrylic copolymerization. J Org Chem 75:1620–1629CrossRefGoogle Scholar
  56. 56.
    Mager I, Zeitler K (2010) Efficient, enantioselective iminium catalysis with an immobilized, recyclable diarylprolinol silyl ether catalyst. Org Lett 12:1480–1483CrossRefGoogle Scholar
  57. 57.
    Maltsev OV, Kucherenko AS, Zlotin SG (2009) O-TMS-α,α-diphenyl-(S)-prolinol modified with an ionic liquid moiety: a recoverable organocatalyst for the asymmetric Michael reaction between α,β-enals and dialkyl malonates. Eur J Org Chem 5134–5137Google Scholar
  58. 58.
    Lombardo M, Chiarucci M, Quintavalla A, Trombini C (2009) Highly efficient ion-tagged catalyst for the enantioselective Michael addition of aldehydes to nitroalkenes. Adv Synth Catal 351:2801–2806CrossRefGoogle Scholar
  59. 59.
    Zheng Z, Perkins BL, Ni B (2010) Diarylprolinol silyl ether salts as new, efficient, water-Soluble, and recyclable organocatalysts for the asymmetric Michael addition on water. J Am Chem Soc 132:50–51CrossRefGoogle Scholar
  60. 60.
    Maltsev OV, Kucherenko AS, Beletskaya IP, Tartakovsky VA, Zlotin SG (2010) Chiral ionic liquids bearing O-silylated α,α-diphenyl (S)- or (R)-prolinol units: recoverable organocatalysts for asymmetric Michael addition of nitroalkanes to α,β-anals. Eur J Org Chem 2927–2933Google Scholar
  61. 61.
    Maltsev OV, Kucherenko AS, Chimishkyan AL, Zlotin SG (2010) α,α-Diarylprolinol-derived chiral ionic liquids: recoverable organocatalysts for the domino reaction between α,β-enals and N-protected hydroxylamines. Tetrahedron Asymmetry 21:2659–2670Google Scholar
  62. 62.
    Ghosh SK, Zheng Z, Ni B (2010) Highly active water-soluble and recyclable organocatalyst for the asymmetric 1,4-conjugate addition of nitroalkanes to α,β-unsaturated aldehydes. Adv Synth Catal 352:2378–2382CrossRefGoogle Scholar
  63. 63.
    Li Y, Liu XY, Zhao G (2006) Effective and recyclable dendritic catalysts for the direct asymmetric Michael addition of aldehydes to nitrostyrenes. Tetrahedron Asymmetry 17:2034–2039CrossRefGoogle Scholar
  64. 64.
    Maltsev OV, Kucherenko AS, Zlotin SG (2011) Ionic polymer-supported O-trimethylsilyl-α, α-diphenyl-(S)-prolinols as recoverable organocatalysts for the asymmetric Michael reactions of carbon acids with α,β-enals. Mendeleev Commun 21:146–148CrossRefGoogle Scholar
  65. 65.
    Schrader W, Handayani PP, Zhou J, List B (2009) Characterization of key Intermediates in a complex organocatalytic cascade Reaction using mass spectrometry. Angew Chem Int Ed 48:1463–1466CrossRefGoogle Scholar
  66. 66.
    Marquez C, Metzger JO (2006) ESI-MS study on the aldol reaction catalyzed by l-proline. Chem Commun 1539–1541Google Scholar
  67. 67.
    Yalalov DA, Tsogoeva SB, Shubina TE, Martynova IM, Clark T (2008) Evidence for an enol mechanism in a highly enantioselective Mannich-type reaction catalyzed by primary amine–thiourea. Angew Chem Int Ed 47:6624–6628CrossRefGoogle Scholar
  68. 68.
    Teichert A, Pfaltz A (2008) Mass spectrometric screening of enantioselective Diels–Alder reactions. Angew Chem Int Ed 47:3360–3362CrossRefGoogle Scholar
  69. 69.
    Santos LS, Pavam CH, Almeida WP, Coelho F, Eberlin MN (2004) Probing the mechanism of the Baylis–Hillman reaction by electrospray ionization mass and tandem mass spectrometry. Angew Chem Int Ed 43:4330–4333CrossRefGoogle Scholar
  70. 70.
    Marquez CA, Fabbretti F, Metzger JO (2007) Electrospray ionization mass spectrometric study on the direct organocatalytic α-halogenation of aldehydes. Angew Chem Int Ed 46:6915–6917CrossRefGoogle Scholar
  71. 71.
    Maltsev OV, Beletskaya IP, Zlotin SG (2011) Organocatalytic Michael and Friedel-Crafts reactions in enantioselective synthesis of biologically active compounds. Russ Chem Rev 80:1067–1113CrossRefGoogle Scholar
  72. 72.
    Marigo M, Wabnitz TC, Fielenbach D, Jorgensen KA (2005) Enantioselective organocatalyzed α sulfenylation of aldehydes. Angew Chem Int Ed 44:794–797CrossRefGoogle Scholar
  73. 73.
    Kim H, Yen C, Preston P, Chin J (2006) Substrate-directed stereoselectivity in vicinal diamine-catalyzed synthesis of warfarin. Org Lett 8:5239–5242CrossRefGoogle Scholar
  74. 74.
    Kucherenko AS, Siyutkin DE, Nigmatov AG, Chizhov AO, Zlotin SG (2012) Chiral primary amine tagged to ionic group as reusable organocatalyst for asymmetric Michael reactions of C-nucleophiles with α,β-unsaturated ketones. Adv Synth Catal 354:3078–3086CrossRefGoogle Scholar
  75. 75.
    Dambrova M, Zvejniece L, Liepinsh E, Cirule H, Zharkova O, Veinberg G, Kalvinsh I (2008) Comparative pharmacological activity of optical isomers of phenibut. Eur J Pharmacol 583:128–134CrossRefGoogle Scholar
  76. 76.
    Smith DF (1984) Stereoselectivity of spinal neurotransmission: effects of baclofen enantiomers on tail-flick reflex in rats. J Neural Transm 60:63–67CrossRefGoogle Scholar
  77. 77.
    Parker CA, Matthews JC, Gunn RN, Martarello L, Cunningham VJ, Dommett D, Knibb ST, Bender D, Jakobsen S, Brown J, Gee AD (2005) Behaviour of [11C]R(−)- and [11C]S(+)-rolipram in vitro and in vivo, and their use as PET radiotracers for the quantificative assay of PDE4. Synapse 55:270–279CrossRefGoogle Scholar
  78. 78.
    Maltsev OV, Chizhov AO, Zlotin SG (2011) Chiral ionic liquid/ESI-MS methodology as an efficient tool for the study of transformations of supported organocatalysts: deactivation pathways of Jørgensen–Hayashi-type catalysts in Asymmetric Michael reactions. Chem Eur J 17:6109–6117CrossRefGoogle Scholar
  79. 79.
    Juaristi E, Soloshonok VA (eds) (2005) Enantioselective synthesis of β-amino acids. Wiley, Hoboken, NJGoogle Scholar
  80. 80.
    Weiner B, Szymanski W, Janssen DB, Minnaard AJ, Feringa BL (2010) Recent advances in the catalytic asymmetric synthesis of beta-amino acids. Chem Soc Rev 39:1656–1691CrossRefGoogle Scholar
  81. 81.
    Sleebs BE, Van Nguyen TT, Hughes AB (2009) Recent advances in stereoselective synthesis and application of β-amino acids. Org Prep Proced Int 41:429–478CrossRefGoogle Scholar
  82. 82.
    Peddie V, Pietsch M, Bromfield KM, Pike RN, Duggan PJ, Abell AD (2010) Fluorinated β²- and β³-amino acids: synthesis and inhibition of α-chymotrypsin. Synthesis 1845–1859Google Scholar
  83. 83.
    Achilles K, Schirmeister T, Otto HH (2000) β-lactam derivatives as enzyme inhibitors: 1-peptidyl derivatives of 4-phenylazetidin-2-one as inhibitors of elastase and papain. Arch Pharm Pharm Med Chem 333:243–253CrossRefGoogle Scholar
  84. 84.
    Patch JA, Barron AE (2002) Mimicry of bioactive peptides via non-natural, sequence-specific peptidomimetic oligomers. Curr Opin Chem Biol 6:872–877CrossRefGoogle Scholar
  85. 85.
    Ogawa J, Mano J, Hagishita T, Shimizu SJ (2009) Enantioselective ester hydrolase from Sphingobacterium sp. 238C5 useful for chiral resolution of β-phenylalanine and for its β-peptide synthesis. Mol Catal B Enzym 60:138–144CrossRefGoogle Scholar
  86. 86.
    Seebach D, Beck AK, Capone S, Deniau G, Grošelj U, Zass E (2009) Enantioselective preparation of β²-amino acid derivatives for β-peptide synthesis. Synthesis 1–32Google Scholar
  87. 87.
    Wuts PGM, Greene TW (2007) Greene’s protective groups in organic synthesis. Wiley-Interscience, New YorkGoogle Scholar
  88. 88.
    Meinertz T, Kasper W, Kahl C, Jähnchen E (1978) Anticoagulant activity of the enantiomers of acenocoumarol. J Clin Pharmacol 5:187–188Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • S. G. Zlotin
    • 1
  • A. S. Kuherenko
    • 1
  • O. V. Maltsev
    • 1
  • A. O. Chizhov
    • 1
  1. 1.N.D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations