Topics in Catalysis

, Volume 56, Issue 11, pp 896–904 | Cite as

Characterization of Metal-Oxide Catalysts in Operando Conditions by Combining X-ray Absorption and Raman Spectroscopies in the Same Experiment

  • A. Patlolla
  • P. Baumann
  • W. Xu
  • S. D. Senanayake
  • J. A. Rodriguez
  • A. I. Frenkel
Original Paper

Abstract

We have developed a new instrumental setup that combines simultaneous X-ray absorption spectroscopy, Raman spectroscopy and online mass spectrometry for operando studies of catalytic reactions. The importance of combining these techniques in the same experiment is demonstrated with the example of CO oxidation over nanoscale copper oxide catalysts supported on high surface area titanium oxide. X-ray absorption near edge structure (XANES) spectroscopy provides information on the charge state and local geometry of the catalytically active atoms. Extended X-ray absorption fine-structure (EXAFS) technique adds information about their local coordination environment. Raman spectroscopy adds sensitivity to crystallographic phase and long range order that both XANES and EXAFS are lacking. Together, these measurements enable simultaneous studies of the structural and electronic properties of all components present in metal-oxide catalysts. Coupled with online reactant and product analysis, this new setup allows one to elucidate the synergy between different components of a catalytic system and shed light on its catalytic activity and selectivity.

Keywords

Multi-technique characterization Operando studies  Metal Oxide catalysts  Oxygen reservoir 

References

  1. 1.
    Leyva C, Rana MS, Ancheyta J (2008) Catal Today 130:345CrossRefGoogle Scholar
  2. 2.
    Montanari T, Marie O, Daturi M, Busca G (2005) Catal Today 110:339CrossRefGoogle Scholar
  3. 3.
    Stuchinskaya TL, Kozhevnikov IV (2003) Catal Commun 4:609CrossRefGoogle Scholar
  4. 4.
    Noronha FB, Schmal M, Primet M, Frety R (1991) Appl Catal 78:125CrossRefGoogle Scholar
  5. 5.
    Karpiński Z (1990) In: Eley DD, Pines H, Weisz PB (eds) Advances in catalysis, vol 37. Academic Press, London, p 45Google Scholar
  6. 6.
    Valden M, Lai X, Goodman DW (1998) Science 281:1647CrossRefGoogle Scholar
  7. 7.
    Liu W, Wadia C, Flytzani-Stephanopoulos M (1996) Catal Today 28:391CrossRefGoogle Scholar
  8. 8.
    Edwards MA, Whittle DM, Rhodes C, Ward AM, Rohan D, Shannon MD, Hutchings GJ, Kiely CJ (2002) Phys Chem Chem Phys 4:3902CrossRefGoogle Scholar
  9. 9.
    Rao GR, Kašpar J, Meriani S, Monte R, Graziani M (1994) Catal Lett 24:107CrossRefGoogle Scholar
  10. 10.
    Sinfelt JH, Meitzner GD (1993) Acc Chem Res 26:1CrossRefGoogle Scholar
  11. 11.
    Anderson MW, Klinowski J (1990) J Am Chem Soc 112:10CrossRefGoogle Scholar
  12. 12.
    Sojka Z, Che M (2001) Appl Magn Reson 20:433CrossRefGoogle Scholar
  13. 13.
    Leba A, Davran-Candan T, Önsan ZI, Yıldırım R (2012) Catal Commun 29:6CrossRefGoogle Scholar
  14. 14.
    Ren B, Lin X-F, Yang Z-L, Liu G-K, Aroca RF, Mao B-W, Tian Z-Q (2003) J Am Chem Soc 125:9598CrossRefGoogle Scholar
  15. 15.
    Lietz G, Lieske H, Spindler H, Hanke W, Völter J (1983) J Catal 81:17CrossRefGoogle Scholar
  16. 16.
    Grunwaldt J-D, Clausen BS (2002) Top Catal 18:37CrossRefGoogle Scholar
  17. 17.
    Frenkel AI, Rodriguez JA, Chen JG (2012) ACS Catal 2:2269CrossRefGoogle Scholar
  18. 18.
    Shannon IJ, Maschmeyer T, Sankar G, Thomas JM, Oldroyd RD, Sheehy M, Madill D, Waller AM, Townsend RP (1997) Catal Lett 44:23CrossRefGoogle Scholar
  19. 19.
    Frenkel AI, Wang Q, Marinkovic N, Chen JG, Barrio L, Si R, López Cámara A, Estrella AM, Rodriguez JA, Hanson JC (2011) J Phys Chem C 115:17884CrossRefGoogle Scholar
  20. 20.
    Weckhuysen BM (2003) Phys Chem Chem Phys 5:4351CrossRefGoogle Scholar
  21. 21.
    Tinnemans SJ, Mesu JG, Kervinen K, Visser T, Nijhuis TA, Beale AM, Keller DE, van der Eerden AMJ, Weckhuysen BM (2006) Catal Today 113:3CrossRefGoogle Scholar
  22. 22.
    Beale AM, van der Eerden AMJ, Jacques SDM, Leynaud O, O’Brien MG, Meneau F, Nikitenko S, Bras W, Weckhuysen BM (2006) J Am Chem Soc 128:12386CrossRefGoogle Scholar
  23. 23.
    Mesu JG, van der Eerden AMJ, de Groot FMF, Weckhuysen BM (2005) J Phys Chem B 109:4042CrossRefGoogle Scholar
  24. 24.
    Tromp M, Sietsma JRA, van Bokhoven JA, van Strijdonck GPF, van Haaren RJ, van der Eerden AMJ, van Leeuwen PWNM, Koningsberger DC (2003) Chem Commun, 128Google Scholar
  25. 25.
    Newton MA, Dent AJ, Fiddy SG, Jyoti B, Evans J (2007) Catal Today 126:64CrossRefGoogle Scholar
  26. 26.
    Newton MA, van Beek W (2010) Chem Soc Rev 39:4845CrossRefGoogle Scholar
  27. 27.
    Marinkovic NS, Wang Q, Frenkel AI (2011) J Synchrotron Radiat 18:447CrossRefGoogle Scholar
  28. 28.
    Patlolla A, Carino EV, Ehrlich SV, Stavitski E, Frenkel AI (2012) ACS Catal 2:2216CrossRefGoogle Scholar
  29. 29.
    Wainwright MS, Foster NR (1979) Catal Rev 19:211CrossRefGoogle Scholar
  30. 30.
    Busca G, Ramis G, Amores JMG, Escribano VS, Piaggio P (1994) J Chem Soc Faraday Trans 90:3181CrossRefGoogle Scholar
  31. 31.
    Breen JP, Ross JRH (1999) Catal Today 51:521CrossRefGoogle Scholar
  32. 32.
    Takezawa N, Iwasa N (1997) Catal Today 36:45CrossRefGoogle Scholar
  33. 33.
    Larsson P-O, Andersson A (2000) Appl Catal B 24:175CrossRefGoogle Scholar
  34. 34.
    Dong G, Wang J, Gao Y, Chen S (1999) Catal Lett 58:37CrossRefGoogle Scholar
  35. 35.
    Kumar PM, Badrinarayanan S, Sastry M (2000) Thin Solid Films 358:122CrossRefGoogle Scholar
  36. 36.
    Schalow T, Brandt B, Laurin M, Guimond S, Starr D, Shaikhutdinov S, Schauermann S, Libuda J, Freund H-J (2007) Top Catal 42–43:387CrossRefGoogle Scholar
  37. 37.
    Clausen BS, Steffensen G, Fabius B, Villadsen J, Feidenhans’l R, Topsøe H (1991) J Catal 132:524CrossRefGoogle Scholar
  38. 38.
    Zabinsky SI, Rehr JJ, Ankundinov A, Albers RC, Eller MJ (1995) Phys Rev B 52:2995CrossRefGoogle Scholar
  39. 39.
    Ravel B, Newville M (2005) J Synchrotron Radiat 12:537CrossRefGoogle Scholar
  40. 40.
    Newville MJ (2001) Synchrotron Radiat 8:322CrossRefGoogle Scholar
  41. 41.
    Larsson P-O, Andersson A (1998) J Catal 179:72CrossRefGoogle Scholar
  42. 42.
    Kosuge K (1999) J Phys Chem B 103:3563CrossRefGoogle Scholar
  43. 43.
    Schramlmarth M, Wokaun A, Baiker A (1991) Fresen J Anal Chem 341:87CrossRefGoogle Scholar
  44. 44.
    Larsson P-O, Andersson A, Wallenberg LR, Svensson B (1996) J Catal 163:279CrossRefGoogle Scholar
  45. 45.
    Reimann K, Syassen K (1990) Solid State Commun 76:137CrossRefGoogle Scholar
  46. 46.
    Hamilton JC, Farmer JC, Anderson RJ (1986) J Electrochem Soc 133:739CrossRefGoogle Scholar
  47. 47.
    Wang Q, Hanson JC, Frenkel AI (2008) J Chem Phys 129:234502CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. Patlolla
    • 1
  • P. Baumann
    • 1
    • 2
  • W. Xu
    • 3
  • S. D. Senanayake
    • 3
  • J. A. Rodriguez
    • 3
  • A. I. Frenkel
    • 1
  1. 1.Physics DepartmentYeshiva UniversityNew YorkUSA
  2. 2.University of Applied Sciences of Northwestern SwitzerlandMuttenzSwitzerland
  3. 3.Department of ChemistryBrookhaven National LaboratoryUptonUSA

Personalised recommendations