Topics in Catalysis

, Volume 56, Issue 11, pp 874–884 | Cite as

Decomposition of Ethanol Over Ru(0001): A DFT Study

Original Paper


We studied decomposition pathways of ethanol on Ru(0001) with periodic slab-model calculations using a DFT-GGA approach. We calculated the adsorption modes of ethanol and several of its dehydrogenation products and we evaluated reaction energies as well as activation barriers of pertinent dehydrogenation, C–C, and C–O cleavage steps. The calculated barrier heights of C–C and C–O scission steps can be related to the number of hydrogen atoms bound to the C1–C2 and C1–O moieties of the intermediates, respectively. Two counteracting effects are at work, increasing with each dehydrogenation: (i) higher order of the pertinent bond of the adsorbate, and (ii) stronger substrate-surface interaction and thus better stabilization of the transition state. For most intermediates we determined C–O cleavage to be both kinetically and thermodynamically favored over C–C scission, except for the highly dehydrogenated species CH k CO (k = 1, 2). Based on the calculated energetics, the most likely decomposition pathway, with a rate-determining barrier at 77 kJ·mol−1, leads to the formation of ketene CH2CO and subsequent C–C cleavage yielding methylene and CO.


Ethanol Ru(0001) DFT Biomass Catalysis 



C.C.C. is grateful for a fellowship by the International Graduate School of Science and Engineering at Technische Universität München. The work of N.R. was supported by Fonds der Chemischen Industrie. We acknowledge generous computing resources at Leibniz Rechenzentrum München.

Supplementary material

11244_2013_51_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1171 kb)


  1. 1.
    Serrano-Ruiz JC, Luque R, Sepulveda-Escribano A (2011) Chem Soc Rev 40:5266–5281CrossRefGoogle Scholar
  2. 2.
    Chheda JN, Huber GW, Dumesic JA (2007) Angew Chem Int Ed 46:7164–7183CrossRefGoogle Scholar
  3. 3.
    Alonso DM, Bond JQ, Dumesic JA (2010) Green Chem 12:1493–1513CrossRefGoogle Scholar
  4. 4.
    Van de Vyver S, Geboers J, Jacobs PA, Sels BF (2011) ChemCatChem 3:82–94CrossRefGoogle Scholar
  5. 5.
    Geboers JA, Van de Vyver S, Ooms R, Op de Beeck B, Jacobs PA, Sels BF (2011) Catal Sci Technol 1:714–726CrossRefGoogle Scholar
  6. 6.
    Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA (2005) Appl Catal B 56:171–186CrossRefGoogle Scholar
  7. 7.
    Shabaker JW, Davda RR, Huber GW, Cortright RD, Dumesic JA (2003) J Catal 215:344–352CrossRefGoogle Scholar
  8. 8.
    Shabaker JW, Huber GW, Dumesic JA (2004) J Catal 222:180–191CrossRefGoogle Scholar
  9. 9.
    Shabaker JW, Simonetti DA, Cortright RD, Dumesic JA (2005) J Catal 231:67–76CrossRefGoogle Scholar
  10. 10.
    Maris EP, Davis RJ (2007) J Catal 249:328–337CrossRefGoogle Scholar
  11. 11.
    Maris EP, Ketchie WC, Murayama M, Davis RJ (2007) J Catal 251:281–294CrossRefGoogle Scholar
  12. 12.
    Huber GW, Shabaker JW, Evans ST, Dumesic JA (2006) Appl Catal B 62:226–235CrossRefGoogle Scholar
  13. 13.
    Shabaker JW, Huber GW, Davda RR, Cortright RD, Dumesic JA (2003) Catal Lett 88:1–8CrossRefGoogle Scholar
  14. 14.
    Wawrzetz A, Peng B, Hrabar A, Jentys A, Lemonidou AA, Lercher JA (2010) J Catal 269:411–420CrossRefGoogle Scholar
  15. 15.
    Weingarten R, Conner WC, Huber GW (2012) Energy Environ Sci 5:7559–7574CrossRefGoogle Scholar
  16. 16.
    Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA (2003) Appl Catal B 43:13–26CrossRefGoogle Scholar
  17. 17.
    Guo N, Caratzoulas S, Doren DJ, Sandler SI, Vlachos DG (2012) Energy Environ Sci 5:6703–6716CrossRefGoogle Scholar
  18. 18.
    Cortright RD, Davda RR, Dumesic JA (2002) Nature 418:964–967CrossRefGoogle Scholar
  19. 19.
    Ojeda M, Li A, Nabar R, Nilekar AU, Mavrikakis M, Iglesia E (2010) J Phys Chem C 114:19761–19770CrossRefGoogle Scholar
  20. 20.
    Ojeda M, Nabar R, Nilekar AU, Ishikawa A, Mavrikakis M, Iglesia E (2010) J Catal 272:287–297CrossRefGoogle Scholar
  21. 21.
    Zhuo M, Tan KF, Borgna A, Saeys M (2009) J Phys Chem C 113:8357–8365CrossRefGoogle Scholar
  22. 22.
    Inderwildi OR, Jenkins SJ, King DA (2008) J Phys Chem C 112:1305–1307CrossRefGoogle Scholar
  23. 23.
    Shetty S, Jansen APJ, van Santen RA (2009) J Am Chem Soc 131:12874–12875CrossRefGoogle Scholar
  24. 24.
    Shetty S, Jansen APJ, van Santen RA (2008) J Phys Chem C 112:14027–14033CrossRefGoogle Scholar
  25. 25.
    Ciobîcǎ IM, van Santen RA (2002) J Phys Chem B 106:6200–6205CrossRefGoogle Scholar
  26. 26.
    Ciobîcǎ IM, Frechard F, Van Santen RA, Kleyn AW, Hafner J (1999) Chem Phys Lett 311:185–192CrossRefGoogle Scholar
  27. 27.
    Ciobîcǎ IM, Frechard F, Van Santen RA, Kleyn AW, Hafner J (2000) J Phys Chem B 104:3364–3369CrossRefGoogle Scholar
  28. 28.
    Ge Q, Neurock M, Wright HA, Srinivasan N (2002) J Phys Chem B 106:2826–2829CrossRefGoogle Scholar
  29. 29.
    Ciobîcǎ IM, Kramer GJ, Ge Q, Neurock M, van Santen RA (2002) J Catal 212:136–144CrossRefGoogle Scholar
  30. 30.
    Liu Z-P, Hu P (2002) J Am Chem Soc 124:11568–11569CrossRefGoogle Scholar
  31. 31.
    Morgan GA, Sorescu DC, Zubkov T, Yates JT (2004) J Phys Chem B 108:3614–3624CrossRefGoogle Scholar
  32. 32.
    Kresse G, Hafner J (1994) Phys Rev B 49:14251–14269CrossRefGoogle Scholar
  33. 33.
    Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15–50CrossRefGoogle Scholar
  34. 34.
    Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249CrossRefGoogle Scholar
  35. 35.
    Blöchl PE (1994) Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  36. 36.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  37. 37.
    Methfessel M, Paxton AT (1989) Phys Rev B 40:3616–3621CrossRefGoogle Scholar
  38. 38.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192CrossRefGoogle Scholar
  39. 39.
    Mills G, Jónsson H, Schenter GK (1995) Surf Sci 324:305–337CrossRefGoogle Scholar
  40. 40.
    Jónsson H, Mills G, Jacobsen KW (1998) Nudged elastic band method for finding minimum energy paths of transitions. In: Berne BJ, Ciccotti G, Coker DF (eds) Classical and quantum dynamics in condensed phase simulations. World Scientific, pp 385–404Google Scholar
  41. 41.
    Henkelman G, Jónsson H (1999) J Chem Phys 111:7010–7022CrossRefGoogle Scholar
  42. 42.
    Li M, Guo W, Jiang R, Zhao L, Shan H (2009) Langmuir 26:1879–1888CrossRefGoogle Scholar
  43. 43.
    Basaran D, Genest A, Rösch N (2012) J Catal 287:210–213CrossRefGoogle Scholar
  44. 44.
    Alcalá R, Mavrikakis M, Dumesic JA (2003) J Catal 218:178–190CrossRefGoogle Scholar
  45. 45.
    Yudanov IV, Matveev AV, Neyman KM, Rösch N (2008) J Am Chem Soc 130:9342–9352CrossRefGoogle Scholar
  46. 46.
    Basaran D, Aleksandrov HA, Chen Z-X, Zhao Z-J, Rösch N (2011) J Mol Catal A 344:37–46CrossRefGoogle Scholar
  47. 47.
    Chen Z-X, Aleksandrov HA, Basaran D, Rösch N (2010) J Phys Chem C 114:17683–17692CrossRefGoogle Scholar
  48. 48.
    Zhao Z-J, Moskaleva LV, Aleksandrov HA, Basaran D, Rösch N (2010) J Phys Chem C 114:12190–12201CrossRefGoogle Scholar
  49. 49.
    Moskaleva LV, Aleksandrov HA, Basaran D, Zhao Z-J, Rösch N (2009) J Phys Chem C 113:15373–15379CrossRefGoogle Scholar
  50. 50.
    Moskaleva LV, Chen Z-X, Aleksandrov HA, Mohammed AB, Sun Q, Rösch N (2009) J Phys Chem C 113:2512–2520CrossRefGoogle Scholar
  51. 51.
    Kua J, Goddard WA (1999) J Am Chem Soc 121:10928–10941CrossRefGoogle Scholar
  52. 52.
    Bligaard T, Nørskov JK, Dahl S, Matthiesen J, Christensen CH, Sehested J (2004) J Catal 224:206–217CrossRefGoogle Scholar
  53. 53.
    Ford DC, Nilekar AU, Xu Y, Mavrikakis M (2010) Surf Sci 604:1565–1575CrossRefGoogle Scholar
  54. 54.
    Liu B, Greeley J (2011) J Phys Chem C 115:19702–19709CrossRefGoogle Scholar
  55. 55.
    Liu B, Greeley J (2012) Top Catal 55:280–289CrossRefGoogle Scholar
  56. 56.
    Zope BN, Hibbitts DD, Neurock M, Davis RJ (2010) Science 330:74–78CrossRefGoogle Scholar
  57. 57.
    Ferrin P, Simonetti D, Kandoi S, Kunkes E, Dumesic JA, Nørskov JK, Mavrikakis M (2009) J Am Chem Soc 131:5809–5815CrossRefGoogle Scholar
  58. 58.
    Choi Y, Liu P (2011) Catal Today 165:64–70CrossRefGoogle Scholar
  59. 59.
    Li M, Guo W, Jiang R, Zhao L, Lu X, Zhu H, Fu D, Shan H (2010) J Phys Chem C 114:21493–21503CrossRefGoogle Scholar
  60. 60.
    Zhang J, Cao XM, Hu P, Zhong Z, Borgna A, Wu P (2011) J Phys Chem C 115:22429–22437CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Cheng-chau Chiu
    • 1
  • Alexander Genest
    • 1
    • 2
  • Notker Rösch
    • 1
    • 2
  1. 1.Department Chemie and Catalysis Research CenterTechnische Universität MünchenGarchingGermany
  2. 2.Institute of High Performance ComputingAgency for Science, Technology and ResearchSingaporeSingapore

Personalised recommendations