Topics in Catalysis

, Volume 56, Issue 9–10, pp 522–526 | Cite as

Low-Temperature Growth of Carbon Nanotubes on Bi- and Tri-metallic Catalyst Templates

  • O. Pitkänen
  • N. Halonen
  • A.-R. Leino
  • J. Mäklin
  • Á. Dombovári
  • J. H. Lin
  • G. Tóth
  • K. KordásEmail author
Original Paper


Low temperature growth process of carbon nanotubes (CNTs) over bi-metallic (Co–Fe) and tri-metallic (Ni–Co–Fe) catalysts on Si/Al/Al2O3 substrates is carried out from acetylene precursor using hydrogen, ammonia or nitrogen as a carrier in a low pressure chemical vapor deposition system. Using the tri-metallic Ni–Co–Fe catalyst template, vertically aligned CNTs of ~700 nm length could be grown already at 450 °C within 10 min using ammonia as a carrier. Within the same period of time, on bi-metallic Co–Fe catalyst templates, ~250 nm long aligned nanotubes emerged already at 400 °C in nitrogen carrier. At low temperatures most of the catalyst materials were elevated from the support by the grown nanotubes indicating tip growth mechanism. The structure of catalyst layers and nanotube films was studied using scanning and transmission electron microscopy and atomic force microscopy.


Structure of carbon nanotubes Crystal growth from vapors Chemical vapor deposition Catalysis in nanotechnology 



N.H., A.-R.L. and G.T are grateful for the support from the NGS-Nano, GETA and Academy of Finland, respectively. The work is financed by the projects Thema-CNT (EU FP7) and RoCaNaMe (Academy of Finland) programs.


  1. 1.
    Bacsa W (2003) In: Bushan B (ed) Springer handbook of nanotechnology, chap. 3, vol. 2. Springer, BerlinGoogle Scholar
  2. 2.
    Kordas K, Toth G, Moilanen P, Kumpumaki M, Vahakangas J, Uusimaki A, Vajtai R, Ajayan PM (2007) Appl Phys Lett 90:123105CrossRefGoogle Scholar
  3. 3.
    Wang T, Jeppson K, Ye L, Liu J (2011) Small 7:2313CrossRefGoogle Scholar
  4. 4.
    Halonen N, Kordas K, Toth G, Mustonen T, Maklin J, Vahakangas J, Ajayan PM, Vajtai R (2008) J Phys Chem C 112:6723CrossRefGoogle Scholar
  5. 5.
    Jiang J, Feng T, Zhang JH, Cheng XH, Chao GB, Jiang BY, Wang YJ, Wang X, Liu XH, Zou SC (2006) Appl Surf Sci 252:2938CrossRefGoogle Scholar
  6. 6.
    Jung YJ, Wei BQ, Vajtai R, Ajayan PM (2003) Nano Lett 3:561CrossRefGoogle Scholar
  7. 7.
    Mata D, Silva RM, Fernandes AJS, Oliveira FJ, Costa PMFJ, Silva RF (2012) Carbon 50:3585CrossRefGoogle Scholar
  8. 8.
    Mizuno K, Hata K, Saito T, Ohshima S, Yumura M, Iijima S (2005) J Phys Chem B 109:2632CrossRefGoogle Scholar
  9. 9.
    Radhakrishnan JK, Pandian PS, Padaki VC, Bhusan H, Rao KUB, Xie J, Abraham JK, Varadan VK (2009) Appl Surf Sci 255:6325CrossRefGoogle Scholar
  10. 10.
    Wei BQ, Vajtai R, Jung Y, Ward J, Zhang R, Ramanath G, Ajayan PM (2002) Nature 416:495CrossRefGoogle Scholar
  11. 11.
    Zhan ZY, Zhang YN, Sun GZ, Zheng LX, Liao K (2011) Appl Surf Sci 257:7704CrossRefGoogle Scholar
  12. 12.
    Dubosc M, Casimirius S, Besland M-P, Cardinaud C, Granier A, Duvail J, Gohier A, Minéa T, Arnal V, Torres J (2007) Microelectron Eng 84:2501CrossRefGoogle Scholar
  13. 13.
    Hofmann S, Ducati C, Robertson J, Kleinsorge B (2003) Appl Phys Lett 83:135CrossRefGoogle Scholar
  14. 14.
    Hofmann S, Kleinsorge B, Ducati C, Ferrari A, Robertson J (2004) Diam Relat Mater 13:1171CrossRefGoogle Scholar
  15. 15.
    Kang H, Yoon H, Kim C, Hong J, Han I, Cha S, Song B, Jung J, Lee N, Kim J (2001) Chem Phys Lett 349:196CrossRefGoogle Scholar
  16. 16.
    Kyung S, Lee Y, Kim C, Lee J, Yeom G (2006) Carbon 44:1530CrossRefGoogle Scholar
  17. 17.
    Shiratori Y, Hiraoka H, Takeuchi Y, Itoh S, Yamamoto M (2003) Appl Phys Lett 82:2485CrossRefGoogle Scholar
  18. 18.
    Show Y (2011) Diam Relat Mater 20:1081CrossRefGoogle Scholar
  19. 19.
    Srivastava SK, Vankar VD, Kumar V (2008) Nanoscale Res Lett 3:25CrossRefGoogle Scholar
  20. 20.
    Wang H, Moore JJ (2012) Carbon 50:1235CrossRefGoogle Scholar
  21. 21.
    Nessim GD, Seita M, Plata DL, O’Brien KP, Hart AJ, Meshot ER, Reddy CM, Gschwend PM, Thompson CV (2011) Carbon 49:804CrossRefGoogle Scholar
  22. 22.
    Wang X, Zhang Y, Haque MS, Teo KBK, Mann M, Unalan HE, Warburton PA, Udrea F, Milne WI (2012) IEEE Trans Nanotechnol 11:215CrossRefGoogle Scholar
  23. 23.
    Cantoro M, Hofmann S, Pisana S, Scardaci V, Parvez A, Ducati C, Ferrari A, Blackburn A, Wang K, Robertson J (2006) Nano Lett 6:1107CrossRefGoogle Scholar
  24. 24.
    Tsai T, Tai N, Chen KC, Lee SH, Chan LH, Chang YY (2009) Diam Relat Mater 18:307CrossRefGoogle Scholar
  25. 25.
    Halonen N, Sapi A, Nagy L, Puskas R, Leino AR, Maklin J, Kukkola J, Toth G, Wu MC, Liao HC, Su WF, Shchukarev A, Mikkola JP, Kukovecz A, Konya Z, Kordas K (2011) Phys Stat Sol B 248:2500CrossRefGoogle Scholar
  26. 26.
    Terrado E, Tacchini I, Benito AM, Maser WK, Martínez MT (2009) Carbon 47:1989CrossRefGoogle Scholar
  27. 27.
    Lee S, Chang Y, Lee L (2008) N Carbon Mater 23:302CrossRefGoogle Scholar
  28. 28.
    Mattevi C, Tobias Wirth C, Hofmann S, Blume R, Cantoro M, Ducati C, Cepek C, Knop-Gericke A, Milne S, Castellarin-Cudia C, Dolafi S, Goldoni A, Schloegl R, Robertson J (2008) J Phys Chem C 112:12207CrossRefGoogle Scholar
  29. 29.
    Azam MA, Fujiwara A, Shimoda T (2011) Appl Surf Sci 258:873CrossRefGoogle Scholar
  30. 30.
    Zhang R, Amlani L, Baker J, Tresek J, Tsui R (2003) Nano Lett 3:731CrossRefGoogle Scholar
  31. 31.
    Durán RP, Amorebieta VT, Colussi AJ (1988) J Phys Chem 92:636CrossRefGoogle Scholar
  32. 32.
    Back MH (1971) Can J Chem 49:2199CrossRefGoogle Scholar
  33. 33.
    Tanzawa T, Gardiner W (1980) J Phys Chem 84:236CrossRefGoogle Scholar
  34. 34.
    Ajayan P (2004) Nature 427:426CrossRefGoogle Scholar
  35. 35.
    Harris P (2007) Carbon 45:229CrossRefGoogle Scholar
  36. 36.
    Wirth CT, Hofmann S, Robertson J (2009) Diam Relat Mater 18:940CrossRefGoogle Scholar
  37. 37.
    Hofmann S, Blume R, Wirth C, Cantoro M, Sharma R, Ducati C, Hävecker M, Zafeiratos S, Schnoerch P, Oestereich A, Teschner D, Albrecht M, Knop-Gericke A, Schlögl R, Robertson J (2009) J Phys Chem C 113:1648CrossRefGoogle Scholar
  38. 38.
    Feng J, Zeng HC (2005) J Phys Chem B 109:17113CrossRefGoogle Scholar
  39. 39.
    Juang ZY, Chien IP, Lai JF, Lai TS, Tsai CH (2004) Diam Relat Mater 13:1203CrossRefGoogle Scholar
  40. 40.
    Choi KS, Cho YS, Hong SY, Park JB, Kim DJ (2001) J Eur Ceram Soc 21:2095CrossRefGoogle Scholar
  41. 41.
    Lander JJ, Kern HE, Beach AL (1952) J Appl Phys 23:1305CrossRefGoogle Scholar
  42. 42.
    Ishida K, Nishizawa T (1991) J Phase Equil 12:417CrossRefGoogle Scholar
  43. 43.
    ASM Handbook Committee (1974) Metals handbook vol. 8: metallography, structures and phase diagrams. American Society for Metals, Metals ParkGoogle Scholar
  44. 44.
    Atkins P, de Paula J (2006) Atkins’ physical chemistry, 8th edn. Oxford University Press, OxfordGoogle Scholar
  45. 45.
    Kittel C (1971) Introduction to solid state physics, 4th edn. Wiley, New YorkGoogle Scholar
  46. 46.
    Wu TM (2005) Carbon nanotube applications for CMOS back-end processing. Diploma Thesis, Massachusetts Institute of TechnologyGoogle Scholar
  47. 47.
    Chen GY, Jensen B, Stolojan V, Silva SRP (2011) Carbon 49:280CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • O. Pitkänen
    • 1
  • N. Halonen
    • 1
  • A.-R. Leino
    • 1
  • J. Mäklin
    • 1
  • Á. Dombovári
    • 1
  • J. H. Lin
    • 1
  • G. Tóth
    • 1
  • K. Kordás
    • 1
    • 2
    Email author
  1. 1.Microelectronics and Materials Physics Laboratories, and EMPART Research Group of Infotech Oulu, Department of Electrical EngineeringUniversity of OuluOuluFinland
  2. 2.Technical Chemistry, Department of Chemistry, Chemical-Biological CenterUmeå UniversityUmeåSweden

Personalised recommendations