Topics in Catalysis

, Volume 55, Issue 19–20, pp 1344–1361 | Cite as

Molecular Redistribution and Molecular Averaging: Disproportionation of Paraffins via Bifunctional Catalysis

  • C. Y. Chen
  • D. J. O’Rear
  • P. Leung
Original Paper


Paraffin disproportionation via molecular redistribution (MR) and molecular averaging (MA) couples paraffin dehydrogenation and olefin hydrogenation to olefin metathesis and presents a unique example of bifunctional catalysis. In this paper we will present a series of applications of the MR/MA chemistry in refining and petrochemical industries. The thermodynamic aspects of the MR/MA chemistry and parameters influencing the catalyst performance will be discussed. We will also report the catalyst regeneration related to coke deposition and sulfur poisoning. Furthermore, the MR technology for upgrading liquid petroleum gas is scaled up in pilot plant. MR/MA provides a simple process of paraffin disproportionation which can be accomplished otherwise only via complex combinations of other existing technologies.


Molecular redistribution Molecular averaging Paraffin disproportionation Bifunctional catalysis 



We thank Chevron Energy Technology Company for supporting this research, especially P. White, D. Earls, C. Wilson and G. Scheuerman. We are grateful to T. Finger for technical assistance.


  1. 1.
    Hsu CS, Robinson PR (2006) Practical advances in petroleum processing. Springer, New YorkCrossRefGoogle Scholar
  2. 2.
    Pines H (1981) The chemistry of catalytic hydrocarbon conversions. Academic Press, New YorkGoogle Scholar
  3. 3.
    Olah GA, Molnár Á (2003) Hydrocarbon chemistry, 2nd edn. Wiley, HobokenCrossRefGoogle Scholar
  4. 4.
    Blauwhoff PMM, Gosselink JW, Kieffer EP, Sie ST, Stork WHJ (1999) In: Weitkamp J, Puppe L (eds) Catalysis and zeolites: fundamentals and applications. Springer, Berlin, pp 437–538Google Scholar
  5. 5.
    Rigutto M (2010) In: Čejka J, Corma A, Zones S (eds) Zeolite and catalysis: synthesis, reactions and applications. Wiley-VCH, Weinheim, pp 547–584CrossRefGoogle Scholar
  6. 6.
    Weitkamp J, Hunger M (2007) In: Čejka J, van Bekkum H, Corma A, Schüth F (eds) Introduction to zeolite science and practice, 3rd edn. Elsevier, Amsterdam, pp 787–835CrossRefGoogle Scholar
  7. 7.
    Ivin KJ, Mol JC (1997) Olefin metathesis and metathesis polymerization. Academic, San DiegoGoogle Scholar
  8. 8.
    Banks RL, Bailey GC (1964) I&EC Prod Res Dev 3:170CrossRefGoogle Scholar
  9. 9.
    Hérisson JL, Chauvin Y (1971) Makromol Chem 141:161CrossRefGoogle Scholar
  10. 10.
    Katz TC, Lee SJ, Acton N (1976) Tetrahedron Lett 17:4247CrossRefGoogle Scholar
  11. 11.
    Grubbs RH (2006) Angew Chem Int Ed 45:3760CrossRefGoogle Scholar
  12. 12.
    Schmidt R, Welch MB, Anderson RL, Sardashti M, Randolph BB (2008) Energy Fuels 22:1812CrossRefGoogle Scholar
  13. 13.
    Schneider A (1952) J Am Chem Soc 74:2253Google Scholar
  14. 14.
    Ono Y, Tanabe T, Kitajima N (1980) J Catal 64:13CrossRefGoogle Scholar
  15. 15.
    Fuentes GA, Gates BC (1982) J Catal 76:440CrossRefGoogle Scholar
  16. 16.
    Wu AH, Randolph BB, Johnson MM (1995) US Patent 5,414,184Google Scholar
  17. 17.
    Randolph BB, Johnson MM (1996) US Patent 5,489,727Google Scholar
  18. 18.
    Randolph BB (2003) US Patent 6,573,416Google Scholar
  19. 19.
    Dodwell GW, Randolph BB, Sughrue EL (2005) US Patent Application 2005/0033102Google Scholar
  20. 20.
    Chen NY (1986) In: Murakami Y, Iijima A, Ward JW (eds) New development in zeolite science and technology, Proc 7th int zeolite conf, Stud Surf Sci Catal 28, Kodansha-Elsevier, Tokyo, pp 653–660Google Scholar
  21. 21.
    Guisnet M, Gnep NS (1996) Applied Catal A 146:33CrossRefGoogle Scholar
  22. 22.
    Morrison RA (1990) US Patent 4,929,793Google Scholar
  23. 23.
    Jablonski GA, Marler DO, Roth, WJ (1995) US Patent 5,396,016Google Scholar
  24. 24.
    Collins NA, Harandi MN (1998) US Patent 5,763,727Google Scholar
  25. 25.
    Cheung TK, d’Itri JL, Gates BC (1995) J Catal 151:464CrossRefGoogle Scholar
  26. 26.
    Ryu SG, Gates BC (1998) Ind Eng Chem Res 37:1786CrossRefGoogle Scholar
  27. 27.
    Rezgui S, Jentoft RE, Gates BC (1998) Catal Lett 51:229CrossRefGoogle Scholar
  28. 28.
    Larsen G, Petkovic LM (1996) J Mol Catal A 113:517CrossRefGoogle Scholar
  29. 29.
    Vidal V, Théolier A, Thivolle-Cazat J, Basset JM (1997) Science 276:99CrossRefGoogle Scholar
  30. 30.
    Roux EL, Taoufik M, Copéret C, de Mallmann A, Thivolle-Cazat J, Basset JM, Maunders BM, Sunley GJ (2005) Angew Chem Int Ed 44:6775CrossRefGoogle Scholar
  31. 31.
    Basset JM, Copéret C, Lefort L, Maunders BM, Maury O, Roux EL, Saggio G, Soignier S, Soulivong D, Sunley GJ, Taoufik M, Thivolle-Cazat J (2005) J Am Chem Soc 127:8604CrossRefGoogle Scholar
  32. 32.
    Blanc F, Thivolle-Cazat J, Basset JM, Copéret C (2008) Chem Eur J 14:9030CrossRefGoogle Scholar
  33. 33.
    Basset JM, Copéret C, Soulivong D, Taoufik M, Thivolle-Cazat J (2010) Acc Chem Res 43:323CrossRefGoogle Scholar
  34. 34.
    Goldman AS, Roy AH, Huang Z, Ahuja R, Schinski W, Brookhart M (2006) Science 312:257CrossRefGoogle Scholar
  35. 35.
    Bailey BC, Schrock RR, Kundu S, Goldman AS, Huang Z, Brookhart M (2009) Organometallics 28:355CrossRefGoogle Scholar
  36. 36.
    Goldman AS, Brookhart M, Roy AH, Ahuja R, Huang Z (2011) US Patent 7,902,417Google Scholar
  37. 37.
    Hughes TR, Sieg RP (1972) US Patent 3,699,035Google Scholar
  38. 38.
    Hughes TR, Sieg RP (1973) US Patent 3,718,576Google Scholar
  39. 39.
    Hughes TR (1973) US Patent 3,728,410Google Scholar
  40. 40.
    Hughes TR (1973) US Patent 3,773,845Google Scholar
  41. 41.
    Hughes TR (1973) US Patent 3,775,505Google Scholar
  42. 42.
    Hughes TR (1974) US Patent 3,784,622Google Scholar
  43. 43.
    Hughes TR (1974) US Patent 3,793,251Google Scholar
  44. 44.
    Hughes TR (1974) US Patent 3,808,285Google Scholar
  45. 45.
    Burnett RL (1974) US Patent 3,856,876Google Scholar
  46. 46.
    Hughes TR (1975) US Patent 3,864,417Google Scholar
  47. 47.
    Hughes TR (1975) US Patent 3,914,330Google Scholar
  48. 48.
    Hughes TR, Burnett RL, Wall RG (1972) In: Proc 5th Int Congress on Catal, pp 1217–1228Google Scholar
  49. 49.
    Burnett RL, Hughes TR (1973) J Catal 31:55CrossRefGoogle Scholar
  50. 50.
    O’Rear DJ, Kibby CL, Krug RR (2001) US Patent 6,225,359Google Scholar
  51. 51.
    O’Rear DJ, Porter R, Chen CY (2002) US Patent 6,441,263Google Scholar
  52. 52.
    O’Rear DJ, Mohr DH, Chen CY, White PJ (2002) WO 01/16059Google Scholar
  53. 53.
    O’Rear DJ, Krug RR (2003) US Patent 6,562,230Google Scholar
  54. 54.
    Chen CY (2003) US Patent 6,566,568Google Scholar
  55. 55.
    Chen CY, O’Rear DJ, Brundage SR (2003) US Patent 6,566,569Google Scholar
  56. 56.
    Chen CY (2003) US Patent 6,632,765Google Scholar
  57. 57.
    Chen CY, O’Rear DJ (2004) 227th American Chemical Society National Meeting, 28 March–1 April 2004, Anaheim, USAGoogle Scholar
  58. 58.
    Chen CY, O’Rear DJ (2004) 13th Int Congress on Catal, 11–16 July 2004, Paris, FranceGoogle Scholar
  59. 59.
    Chen CY, O’Rear DJ (2005) CATSA 2005, 13–16 Nov 2005, Halfway House, South AfricaGoogle Scholar
  60. 60.
    Chen CY, O’Rear DJ (2008) Collect Czech Chem Commun 73:1105CrossRefGoogle Scholar
  61. 61.
    Hughes TR (1999) Private communicationGoogle Scholar
  62. 62.
  63. 63.
  64. 64.
    Dry ME (2002) Catal Today 71:227CrossRefGoogle Scholar
  65. 65.
    Stull DR, Westrum EF, Sinke GC (1969) The chemical thermodynamics of organic compounds. Wiley, New YorkGoogle Scholar
  66. 66.
    Weisz PB (1962) Adv Cat 13:137CrossRefGoogle Scholar
  67. 67.
    Ergun S (1952) Chem Eng Prog 48:89Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Chevron Energy Technology CompanyRichmondUSA

Personalised recommendations