Advertisement

Topics in Catalysis

, Volume 55, Issue 19–20, pp 1283–1288 | Cite as

The Selective Oxidation of 1,2-Propanediol by Supported Gold-Based Nanoparticulate Catalysts

  • Yulia Ryabenkova
  • Peter J. Miedziak
  • Nicholas F. Dummer
  • Stuart H. Taylor
  • Nikolaos Dimitratos
  • David J. Willock
  • Donald Bethell
  • David W. Knight
  • Graham J. HutchingsEmail author
Original Paper

Abstract

The oxidation of 1,2-propanediol to form lactic acid and hydroxyacetone has been investigated using supported metal nanoparticles. A series of supported gold, palladium, platinum and combinations of these metals have been investigated. In the presence of base the major product formed is lactate, often in excellent yields as, under these conditions the terminal hydroxyl group is oxidised. In the absence of base, more vigorous conditions are required to elicit high conversions; surprisingly, a major product from such reactions is a mono-oxidation product hydroxyacetone, along with lactate.

Keywords

Gold catalysis Gold platinum alloy nanoparticles Lactic acid 1,2-Propanediol oxidation 

Notes

Acknowledgments

This work formed part of the Glycerol Challenge and Sasol Technology (UK) Ltd and the Technology Strategy Board are thanked for their financial support. This project is co-funded by the Technology Strategy Board’s Collaborative Research and Development programme, following an open competition. The Technology Strategy Board is an executive body established by the Government to drive innovation. It promotes and invests in research, development and the exploitation of science, technology and new ideas for the benefit of business—increasing sustainable economic growth in the UK and improving quality of life. For more information visit www.innovateuk.org.

References

  1. 1.
    Miyazawa T, Kasunoki Y, Kunimori K, Tomisihige K (2006) J Catal 240:213–221CrossRefGoogle Scholar
  2. 2.
    Tsujino T, Ohigashi T, Sugiyama S, Kawashiro K, Hayashi H (1992) J Mol Catal 71:25–35CrossRefGoogle Scholar
  3. 3.
    Pinxt HHCM, Kuster BFM, Marnin GB (2000) Appl Catal A 191:45–54CrossRefGoogle Scholar
  4. 4.
    Prati L, Rossi M (1998) J Catal 176:552–560CrossRefGoogle Scholar
  5. 5.
    Biella S, Prati L, Rossi M (2002) J Catal 206:242–247CrossRefGoogle Scholar
  6. 6.
    Porta F, Prati L (2004) J Catal 224:397–403CrossRefGoogle Scholar
  7. 7.
    Landon P, Collier PJ, Papworth AJ, Kiely CJ, Hutchings GJ (2002) Chem Commun 18:2058–2059CrossRefGoogle Scholar
  8. 8.
    Landon P, Collier PJ, Carley AF, Chadwick D, Papworth AJ, Burrows A, Kiely CJ, Hutchings GJ (2003) Phys Chem Chem Phys 5:1917–1923CrossRefGoogle Scholar
  9. 9.
    Solsona BE, Edwards JK, Landon P, Carley AF, Herzing A, Kiely CJ, Hutchings GJ (2006) Chem Mater 18:2689–2695CrossRefGoogle Scholar
  10. 10.
    Edwards JK, Solsona B, Landon P, Carley AF, Herzing A, Watanabe M, Kiely CJ, Hutchings GJ (2005) J Mater Chem 15:4595–4600CrossRefGoogle Scholar
  11. 11.
    Edwards JK, Solsona BE, Landon P, Carley AF, Herzing A, Kiely CJ, Hutchings GJ (2005) J Catal 236:69–79CrossRefGoogle Scholar
  12. 12.
    Edwards JK, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ (2008) Faraday Discuss 138:225–229CrossRefGoogle Scholar
  13. 13.
    Dimitratos N, Lopez-Sanchez JA, Morgan D, Carley A, Prati L, Hutchings GJ (2007) Catal Today 122:317–324CrossRefGoogle Scholar
  14. 14.
    Lopez-Sanchez JA, Dimitratos N, Miedziak P, Ntainjua E, Edwards JK, Morgan D, Carley AF, Triuvalam R, Kiely CJ, Hutchings GJ (2008) Phys Chem Chem Phys 10:1921–1930CrossRefGoogle Scholar
  15. 15.
    Wang T, Shou H, Kou Y, Liu H (2009) Green Chem 11:562–568CrossRefGoogle Scholar
  16. 16.
    Liang D, Gao J, Sun H, Chen P, Hou Z, Zheng X (2011) Appl Catal B 106:423–432CrossRefGoogle Scholar
  17. 17.
    Villa A, Veith GM, Prati L (2010) Angew Chem Int Ed 49:4499–4502CrossRefGoogle Scholar
  18. 18.
    Brett GL, He Q, Hammond C, Miedziak PJ, Dimitratos N, Sankar M, Herzing AA, Conte M, Lopez-Sanchez JA, Kiely CJ, Knight DW, Taylor SH, Hutchings GJ (2011) Angew Chem Int Ed. doi: 10.1002/anie.201101772 Google Scholar
  19. 19.
    Dimitratos N, Lopez-Sanchez JA, Meenakshisundaram S, Anthonykutty JM, Brett G, Carley AF, Taylor SH, Knight DW, Hutchings GJ (2009) Green Chem 11:1209–1216CrossRefGoogle Scholar
  20. 20.
    Enache DI, Edwards JK, Landon P, Solsona-Espriu B, Carley AF, Herzing AA, Watanabe M, Kiely CJ, Knight DW, Hutchings GJ (2006) Science 311:362–365CrossRefGoogle Scholar
  21. 21.
    Pritchard J, Kesavan L, Piccinini M, He QA, Tiruvalam R, Dimitratos N, Lopez-Sanchez JA, Carley AF, Edwards JK, Kiely CJ, Hutchings GJ (2010) Langmuir 26:16568–16577CrossRefGoogle Scholar
  22. 22.
    Paquette LA, Hofferberth JE (2003) Org React 62:477–567Google Scholar
  23. 23.
    Hartung RE, Hilmey DG, Paquette LA (2004) Adv Synth Catal 346:713–716CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Yulia Ryabenkova
    • 1
  • Peter J. Miedziak
    • 1
  • Nicholas F. Dummer
    • 1
  • Stuart H. Taylor
    • 1
  • Nikolaos Dimitratos
    • 1
  • David J. Willock
    • 1
  • Donald Bethell
    • 1
  • David W. Knight
    • 1
  • Graham J. Hutchings
    • 1
    Email author
  1. 1.Cardiff Catalysis Institute, School of ChemistryCardiff UniversityCardiffUK

Personalised recommendations