Advertisement

Topics in Catalysis

, Volume 55, Issue 19–20, pp 1276–1282 | Cite as

Finite-Size Effects in O and CO Adsorption for the Late Transition Metals

  • Andrew A. Peterson
  • Lars C. Grabow
  • Thomas P. Brennan
  • Bonggeun Shong
  • Chinchun Ooi
  • Di M. Wu
  • Christina W. Li
  • Amit Kushwaha
  • Andrew J. Medford
  • Felix Mbuga
  • Lin Li
  • Jens K. Nørskov
Original Paper

Abstract

Gold is known to become significantly more catalytically active as its particle size is reduced, and other catalysts are also known to exhibit finite-size effects. To understand the trends related to finite-size effects, we have used density functional theory to study adsorption of representative adsorbates, CO and O, on the late transition metals Co, Ni, Cu, Ir, Pd, Ag, Rh, Pt and Au. We studied adsorption energies and geometries on 13-atom clusters and compared them to the fcc(111) and fcc(211) crystal facets. In all cases, adsorbates were found to bind significantly more strongly to the 13-atom clusters than to the extended surfaces. The binding strength of both adsorbates were found to correlate very strongly with the average coordination number of the metal atoms to which the adsorbate binds, indicating that the finite-size effects in bonding are not specific to gold.

Keywords

Adsorption Cluster Periodic Finite size 

Notes

Acknowledgments

The authors thank Venkat Viswanathan for valuable technical discussions, and acknowledge support from the US Department of Energy, Office of Basic Energy Sciences. This project was carried out as part of the course CHEMENG 444, Quantum Simulations of Molecules and Materials, in the Department of Chemical Engineering at Stanford University.

References

  1. 1.
    Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115:301CrossRefGoogle Scholar
  2. 2.
    Valden M, Lai X, Goodman DW (1998) Science 281:1647CrossRefGoogle Scholar
  3. 3.
    Lopez N, Janssens TVW, Clausen BS, Xu Y, Mavrikakis M, Bligaard T, Nørskov JK (2004) J Catal 223:232CrossRefGoogle Scholar
  4. 4.
    Boccuzzi F, Chiorino A, Tsubota S, Haruta M (1996) J Phys Chem 100:3625CrossRefGoogle Scholar
  5. 5.
    Bamwenda G, Tsubota S, Nakamura T, Haruta M (1997) Catal Lett 44:83CrossRefGoogle Scholar
  6. 6.
    Minicò S, Scirè S, Crisafulli C, Visco A, Galvagno S (1997) Catal Lett 47:273CrossRefGoogle Scholar
  7. 7.
    Bondzie V, Parker S, Campbell C (1999) Catal Lett 63:143CrossRefGoogle Scholar
  8. 8.
    Grunwaldt J-D, Kiener C, Wgerbauer C, Baiker A (1999) J Catal 181:223CrossRefGoogle Scholar
  9. 9.
    Grunwaldt J-D, Baiker A (1999) J Phys Chem B 103:1002CrossRefGoogle Scholar
  10. 10.
    Sanchez A, Abbet S, Heiz U, Schneider W-D, Häkkinen H, Barnett RN, Landman U (1999) J Phys Chem A 103:9573CrossRefGoogle Scholar
  11. 11.
    Chusuei C, Lai X, Luo K, Goodman D (2000) Top Catal 14:71CrossRefGoogle Scholar
  12. 12.
    Mavrikakis M, Stoltze P, Nørskov J (2000) Catal Lett 64:101CrossRefGoogle Scholar
  13. 13.
    Haruta M, Daté M (2001) Appl Catal A 222:427CrossRefGoogle Scholar
  14. 14.
    Schubert MM, Hackenberg S, van Veen AC, Muhler M, Plzak V, Behm RJ (2001) J Catal 197:113CrossRefGoogle Scholar
  15. 15.
    Costello CK, Kung MC, Oh HS, Wang Y, Kung HH (2002) Appl Catal A 232:159CrossRefGoogle Scholar
  16. 16.
    Haruta M (2002) CATTECH 6:102CrossRefGoogle Scholar
  17. 17.
    Lopez N, Nørskov JK (2002) J Am Chem Soc 124:11262CrossRefGoogle Scholar
  18. 18.
    Mills G, Gordon MS, Metiu H (2002) Chem Phys Lett 359:493CrossRefGoogle Scholar
  19. 19.
    Pietron JJ, Stroud RM, Rolison DR (2002) Nano Lett 2:545CrossRefGoogle Scholar
  20. 20.
    Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Science 301:935CrossRefGoogle Scholar
  21. 21.
    Molina LM, Hammer B (2003) Phys Rev Lett 90:206102CrossRefGoogle Scholar
  22. 22.
    Varganov SA, Olson RM, Gordon MS, Metiu H (2003) J Chem Phys 119:2531CrossRefGoogle Scholar
  23. 23.
    Xu Y, Mavrikakis M (2003) J Phys Chem B 107:9298CrossRefGoogle Scholar
  24. 24.
    Chen MS, Goodman DW (2004) Science 306:252CrossRefGoogle Scholar
  25. 25.
    Guzman J, Gates BC (2004) J Am Chem Soc 126:2672CrossRefGoogle Scholar
  26. 26.
    Lemire C, Meyer R, Shaikhutdinov S, Freund H-J (2004) Angew Chem Int Ed 43:118CrossRefGoogle Scholar
  27. 27.
    Lopez N, Nørskov JK, Janssens TVW, Carlsson A, Puig-Molina A, Clausen BS, Grunwaldt JD (2004) J Catal 225:86CrossRefGoogle Scholar
  28. 28.
    Meier DC, Goodman DW (2004) J Am Chem Soc 126:1892CrossRefGoogle Scholar
  29. 29.
    Sanchez-Castillo MA, Couto C, Kim WB, Dumesic JA (2004) Angew Chem Int Ed 43:1140CrossRefGoogle Scholar
  30. 30.
    Jiang T, Mowbray DJ, Dobrin S, Falsig H, Hvolbæk B, Bligaard T, Nørskov JK (2009) J Phys Chem C 113:10548CrossRefGoogle Scholar
  31. 31.
    Cuenya BR (2010) Thin Solid Films 518:3127CrossRefGoogle Scholar
  32. 32.
    Kleis J, Greeley J, Romero N, Morozov V, Falsig H, Larsen A, Lu J, Mortensen J, Duak M, Thygesen K, Nørskov J, Jacobsen K (2011) Catal Lett 141:1067CrossRefGoogle Scholar
  33. 33.
    Weber AP, Seipenbusch M, Kasper G (2003) J Nanopart Res 5:293CrossRefGoogle Scholar
  34. 34.
    Sharma RK, Sharma P, Maitra A (2003) J Colloid Interface Sci 265:134CrossRefGoogle Scholar
  35. 35.
    Bunluesin T, Cordatos H, Gorte RJ (1995) J Catal 157:222CrossRefGoogle Scholar
  36. 36.
    Okumura M, Masuyama N, Konishi E, Ichikawa S, Akita T (2002) J Catal 208:485CrossRefGoogle Scholar
  37. 37.
    Schnur S, Groß A (2010) Phys Rev B 81:033402CrossRefGoogle Scholar
  38. 38.
    González Carballo JM, Yang J, Holmen A, García-Rodríguez S, Rojas S, Ojeda M, Fierro JLG (2011) J Catal 284:102Google Scholar
  39. 39.
    Grabow L, Hvolbæk B, Nørskov J (2010) Top Catal 53:298CrossRefGoogle Scholar
  40. 40.
    Bahn SR, Jacobsen KW (2002) Comput Sci Eng 4:56CrossRefGoogle Scholar
  41. 41.
    Both ASE and GPAW are open-source code available from the Department of Physics at the Technical University of Denmark and are available at http://www.camd.dtu.dk/software.aspx
  42. 42.
    Mortensen JJ, Hansen LB, Jacobsen KW (2005) Phys Rev B 71:035109CrossRefGoogle Scholar
  43. 43.
    Enkovaara J, Rostgaard C, Mortensen JJ, Chen J, Dułak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen HA, Kristoffersen HH, Kuisma M, Larsen AH, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses PG, Ojanen J, Olsen T, Petzold V, Romero NA, Stausholm-Møller J, Strange M, Tritsaris GA, Vanin M, Walter M, Hammer B, Häkkinen H, Madsen GKH, Nieminen RM, Nørskov JK, Puska M, Rantala TT, Schiøtz J, Thygesen KS, Jacobsen KW (2010) J Phys Condens Matter 22:253202CrossRefGoogle Scholar
  44. 44.
    Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59:7413CrossRefGoogle Scholar
  45. 45.
    Greeley J, Rossmeisl J, Hellmann A, Nørskov JK (2007) Zeitschrift für Physikalische Chemie 221:1209CrossRefGoogle Scholar
  46. 46.
    Xiao L, Zhuang L, Liu Y, Lu J, Abruña HD (2009) J Am Chem Soc 131:602CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Andrew A. Peterson
    • 1
    • 3
  • Lars C. Grabow
    • 1
    • 3
  • Thomas P. Brennan
    • 1
  • Bonggeun Shong
    • 1
  • Chinchun Ooi
    • 1
  • Di M. Wu
    • 4
  • Christina W. Li
    • 4
  • Amit Kushwaha
    • 5
  • Andrew J. Medford
    • 1
    • 3
  • Felix Mbuga
    • 1
  • Lin Li
    • 3
    • 4
  • Jens K. Nørskov
    • 1
    • 2
    • 3
  1. 1.Department of Chemical EngineeringStanford UniversityStanfordUSA
  2. 2.SLAC National Accelerator LaboratoryMenlo ParkUSA
  3. 3.SUNCAT Center for Interface Science and CatalysisStanford UniversityStanfordUSA
  4. 4.Department of ChemistryStanford UniversityStanfordUSA
  5. 5.Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations