Advertisement

Topics in Catalysis

, Volume 55, Issue 14–15, pp 991–998 | Cite as

Synthesis of Nickel Phosphide Nanorods as Catalyst for the Hydrotreating of Methyl Oleate

  • Yongxing Yang
  • Cristina Ochoa-Hernández
  • Patricia Pizarro
  • Víctor A. de la Peña O’Shea
  • Juan M. Coronado
  • David P. Serrano
Original Paper

Abstract

Arrays of nickel phosphide nanorods were successfully synthesized by nanocasting using mesostructured silica SBA-15 as a hard template (HT-Ni2P). After temperature-programmed reduction of the phosphate precursor infiltrated within the pore walls of SBA-15, the unsupported material was obtained by removing the silica matrix with diluted HF. The pore channel of the SBA-15 template stabilizes the Ni2P particles, preventing sintering after the high reduction temperature and shaping their elongated morphology. Moreover, HT-Ni2P catalyst shows an improvement in the textural properties with a significantly higher surface area than the reference sample synthesized in the absence of template. X-ray diffraction revealed that the only crystalline phase present in this material was Ni2P. On the other hand, transmission electron microscopy shows that the catalyst is mainly constituted by agglomerates of nanorods. Through EDX microanalysis the efficient removal of silicon was confirmed. Under hydrotreating conditions, nanorods of Ni2P show a fourfold enhancement in the conversion of methyl oleate with respect to conventional Ni2P synthesized in absence of hard template. Nevertheless, when these data are normalized to surface area, the specific activity of HT-Ni2P nanorods is significantly lower than that of the conventionally prepared sample. Differences in selectivity were also observed as Ni2P nanorods favored the decarboxylation reaction leading to a higher yield of n-heptadecane.

Keywords

Nickel phosphide Nanorods Nanocasting Mesoporous Hydrodeoxygenation Vegetable oil Green diesel 

Notes

Acknowledgments

This study has received financial support of the RESTOENE and LIGCATUP program funded by, respectively, the Consejería de Educación of Comunidad de Madrid and the Spanish Ministry of Science and Competiveness. YXY and VPO thank the financial support of, respectively, AMAROUT (FP7-PEOPLE) and “Ramón y Cajal” (MICINN) programs.

References

  1. 1.
    Hicks JC (2011) J Phys Chem Lett 2:2280–2287CrossRefGoogle Scholar
  2. 2.
    Furimsky E (2000) Appl Catal A 199(2):147–190CrossRefGoogle Scholar
  3. 3.
    Vispute TP, Zhang H, Sanna A, Xiao R, Huber GW (2010) Science 330:1222CrossRefGoogle Scholar
  4. 4.
    Knothe G (2010) Prog Energy Combust. 36:364–376CrossRefGoogle Scholar
  5. 5.
    Kubickova I, Snare M, Eranen K, Maki-Arvela P, Murzin DY (2005) Catal Today 106:197CrossRefGoogle Scholar
  6. 6.
    Boda L, Onyestya G, Solt H, Lonyi F, Valyon J, Thernesz A (2010) Appl Catal A 374:158CrossRefGoogle Scholar
  7. 7.
    Kubicka D, Kaluz L (2010) Appl Catal A 372:199CrossRefGoogle Scholar
  8. 8.
    Kubicka D, Horácek J (2011) Appl Catal A 394:9CrossRefGoogle Scholar
  9. 9.
    Murata K, Liu Y, Inaba M, Takahara I (2010) Energy Fuels 24:2404CrossRefGoogle Scholar
  10. 10.
    Zhao HY, Li D, Bui P, Oyama ST (2011) Appl Catal A 391:305CrossRefGoogle Scholar
  11. 11.
    Whiffen VML, Smith KJ (2010) Energy Fuel 24:4728CrossRefGoogle Scholar
  12. 12.
    Li K, Wang R, Chen J (2011) Energy Fuels 25:854–863CrossRefGoogle Scholar
  13. 13.
    Yang YX, Ochoa-Hernández C, de la Peña O’Shea VA, Coronado JM, Serrano DP (2012) ACS Catal. 2(4):592–598CrossRefGoogle Scholar
  14. 14.
    Stinner C, Prins R, Weber Th (2001) J Catal 202:187–194CrossRefGoogle Scholar
  15. 15.
    Yang PF, Jiang ZX, Ying PL, Li C (2008) J Catal 253:66–73CrossRefGoogle Scholar
  16. 16.
    Yang SF, Liang CH, Prins R (2006) J Catal 241:465–469CrossRefGoogle Scholar
  17. 17.
    Wang R, Smith KJ (2010) Appl Catal A 380:149–164CrossRefGoogle Scholar
  18. 18.
    Kim HY, Ma XL, Song CS (2005) Energy Fuel 19:353CrossRefGoogle Scholar
  19. 19.
    Yang SF, Liang CH, Prins R (2006) J Catal 237:118–130CrossRefGoogle Scholar
  20. 20.
    Gaudette AF, Burns AW, Hayes JR, Smith MC, Bowker RH, Seda T, Bussell ME (2010) J Catal 272:18CrossRefGoogle Scholar
  21. 21.
    Oyama ST, Lee YK (2008) J Catal 258:393CrossRefGoogle Scholar
  22. 22.
    Oyama ST, Gott T, Zhao H, Lee Y-K (2009) Catal Today 143:94CrossRefGoogle Scholar
  23. 23.
    Zhao D, Yang P, Huo Q, Chmelka BF, Stucky GD (1998) Curr Opin Solid State Mater Sci 3:111–121CrossRefGoogle Scholar
  24. 24.
    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552CrossRefGoogle Scholar
  25. 25.
    Li K, Wang R, Chen J (2011) Energy Fuels 25(3):854–863CrossRefGoogle Scholar
  26. 26.
    Koranyi TI, Coumans AE, Hensen EJM, Ryoo R, Kim HS, Pfeifer E, Kasztovszky Z (2009) Appl Catal A 365:48–54CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Yongxing Yang
    • 1
  • Cristina Ochoa-Hernández
    • 1
  • Patricia Pizarro
    • 1
    • 2
  • Víctor A. de la Peña O’Shea
    • 1
  • Juan M. Coronado
    • 1
  • David P. Serrano
    • 1
    • 2
  1. 1.Thermochemical Processes UnitIMDEA Energy InstituteMadridSpain
  2. 2.Department of Chemical and Energy Technology, ESCETRey Juan Carlos UniversityMadridSpain

Personalised recommendations