Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Effect of Crystallographic Phase (β vs. γ) and Surface Area on Gas Phase Nitroarene Hydrogenation Over Mo2N and Au/Mo2N

Abstract

The catalytic action of Mo2N and Au/Mo2N has been assessed in the selective gas phase hydrogenation of p-chloronitrobenzene (p-CNB) to p-chloroaniline (p-CAN). The nitrides were synthesised via temperature programmed treatment of MoO3 in H2 + N2 and Au introduced by deposition–precipitation with urea. We have examined the influence of nitride crystallographic phase (tetragonal β-Mo2N vs. cubic γ-Mo2N) and surface area (7–66 m2 g−1) on the catalytic response. Catalyst activation by temperature programmed reduction has been monitored and the reduced catalysts characterised in terms of BET area/pore volume, H2 chemisorption/temperature programmed desorption (TPD), powder X-ray diffraction (XRD), elemental analysis, scanning (SEM) and transmission (TEM) electron microscopy and X-ray photoelectron spectroscopy (XPS) measurements. The formation of β- and γ-Mo2N was confirmed by XRD and TEM. γ-Mo2N exhibits a platelet morphology whereas β-Mo2N is characterised by an aggregation of small crystallites. Hydrogen chemisorption and TPD analysis have established a greater hydrogen uptake capacity (per unit area) for β-Mo2N relative to γ-Mo2N, which is associated with surface nitrogen deficiency, i.e. higher surface Mo/N for β-Mo2N. Incorporation of Au on both nitrides resulted in an increase in surface hydrogen. The Au phase takes the form of nano-scale particles with a mean size of 7 and 4 nm on β-Mo2N and γ-Mo2N, respectively. Both β-Mo2N and γ-Mo2N promoted the exclusive hydrogenation of p-CNB to p-CAN where the β-form delivered a higher specific (per m2) rate; the specific rate for γ-Mo2N was independent of surface area. The inclusion of Au on both nitrides served to enhance p-CAN production.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Alexander AM, Hargreaves JSJ (2010) Chem Soc Rev 39:4388–4401

  2. 2.

    Furimsky E (2003) Appl Catal A 240:1–28

  3. 3.

    Nagai M (2007) Appl Catal A 322:178–190

  4. 4.

    Wu Z, Yang S, Xin Q, Li C (2003) Catal Surv Asia 7:103–119

  5. 5.

    Hao ZX, Wei ZB, Wang LJ, Li XH, Li C, Min EZ, Xin Q (2000) Appl Catal A 192:81–84

  6. 6.

    Guerrero-Ruiz A, Zhang Y, Bachiller-Baeza B, Rodríguez-Ramos I (1998) Catal Lett 55:165–168

  7. 7.

    Li Y, Fan Y, He J, Xu B, Yang H, Miao J, Chen Y (2004) Chem Eng J 99:213–218

  8. 8.

    Cárdenas-Lizana F, Gómez-Quero S, Perret N, Kiwi-Minsker L, Keane MA (2011) Catal Sci Technol 1:794–801

  9. 9.

    Neylon MK, Choi S, Kwon H, Curry KE, Thompson LT (1999) Appl Catal A 183:253–263

  10. 10.

    Eberhart ME, MacLaren JM (1996) In: Oyama ST (ed) The chemistry of transition metal carbides and nitrides. Blackie, Glasgow

  11. 11.

    Cárdenas-Lizana F, Gómez-Quero S, Perret N, Kiwi-Minsker L, Keane MA (2012) Catal Commun 21:46–51

  12. 12.

    Cárdenas-Lizana F, Lamey D, Gómez-Quero S, Perret N, Kiwi-Minsker L, Keane MA (2011) Catal Today 173:53–61

  13. 13.

    SIDS Initial Assessment report for 15th SIAM OECD SIDS (2002) 1-4-chloronitrobenzene, CAS N° 100-00-15. UNEP publications

  14. 14.

    Li S, Kim WB, Lee JS (1998) Chem Mater 10:1853–1862

  15. 15.

    Nagai M, Goto Y, Uchino O, Omi S (1998) Catal Today 43:249–259

  16. 16.

    Markel EJ, Burdick SE, Leaphart ME, Roberts KL (1999) J Catal 182:136–147

  17. 17.

    Wei ZBZ, Grange P, Delmon B (1998) Appl Surf Sci 135:107–114

  18. 18.

    McKay D, Hargreaves JSJ, Rico JL, Rivera JL, Sun XL (2008) J Solid State Chem 181:325–333

  19. 19.

    Gong S, Chen H, Li W, Li B (2005) Appl Catal A 279:257–261

  20. 20.

    Cairns AG, Gallagher JG, Hargreaves JSJ, McKay D, Morrison E, Rico JL, Wilson K (2009) J Alloy Compd 479:851–854

  21. 21.

    Roberts KL, Markel EJ (1994) J Phys Chem 98:4083–4086

  22. 22.

    Wise RS, Markel EJ (1994) J Catal 145:344–355

  23. 23.

    Marchand R, Tessier F, DiSalvo FJ (1999) J Mater Chem 9:297–304

  24. 24.

    Choi J-G, Curl RL, Thompson LT (1994) J Catal 146:218–227

  25. 25.

    Jaggers CH, Michaels JN, Stacy AM (1990) Chem Mater 2:150–157

  26. 26.

    McGee RCV, Bej SK, Thompson LT (2005) Appl Catal A 284:139–146

  27. 27.

    Volpe L, Boudart M (1985) J Solid State Chem 59:332–347

  28. 28.

    Wei ZB, Xin Q, Grange P, Delmon B (1997) J Catal 168:176–182

  29. 29.

    Li XS, Chen YX, Zhang YJ, Ji CX, Xin Q (1996) React Kinet Catal Lett 58:391–396

  30. 30.

    Choi JG, Lee HJ, Thompson LT (1994) Appl Surf Sci 78:299–307

  31. 31.

    Colling CW, Choi J-G, Thompson LT (1996) J Catal 160:35–42

  32. 32.

    Setthapun W, Bej SK, Thompson LT (2008) Top Catal 49:73–80

  33. 33.

    Logan JW, Heiser JL, McCrea KR, Gates BD, Bussell ME (1998) Catal Lett 56:165–171

  34. 34.

    Xie GH, Jiang ZC (2000) Chin Sci Bull 45:1562–1564

  35. 35.

    Peck JA, Tait CD, Swanson BI, Brown GE (1991) Geochim Cosmochim Acta 55:671–676

  36. 36.

    Dobrosz I, Jiratova K, Pitchon V, Rynkowski JM (2005) J Mol Catal A 234:187–197

  37. 37.

    Oh HS, Yang JH, Costello CK, Wang YM, Bare SR, Kung HH, Kung MC (2002) J Catal 210:375–386

  38. 38.

    Zanella R, Louis C (2005) Catal Today 107:768–777

  39. 39.

    Vakros J, Kordulis C, Lycourghiotis A (2002) Chem Commun 17:1980–1981

  40. 40.

    Gong SW, Chen HK, Li W, Li BQ (2006) Energy Fuels 20:1372–1376

  41. 41.

    Nagai M, Goto Y, Miyata A, Kiyoshi M, Hada K, Oshikawa K, Omi S (1999) J Catal 182:292–301

  42. 42.

    de Lucas Consuegra A, Patterson PM, Keane MA (2006) Appl Catal B 65:227–239

  43. 43.

    Sloczynski J, Bobinski W (1991) J Solid State Chem 92:436–448

  44. 44.

    McKay D, Hargreaves JSJ, Howe RF (2006) Catal Lett 112:109–113

  45. 45.

    Aouadi SM, Paudel Y, Luster B, Stadler S, Kohli P, Muratore C, Hager C, Voevodin AA (2008) Tribol Lett 29:95–103

  46. 46.

    Cai PJ, Yang ZH, Wang CY, Gu YL, Qian YT (2005) Chem Lett 34:1360–1361

  47. 47.

    Inumaru K, Baba K, Yamanaka S (2005) Chem Mater 17:5935–5940

  48. 48.

    Gong SW, Chen HK, Li W, Li BQ (2004) Catal Commun 5:621–624

  49. 49.

    Panda RN, Kaskel S (2006) J Mater Sci 41:2465–2470

  50. 50.

    Haddix GW, Reimer JA, Bell AT (1987) J Catal 108:50–54

  51. 51.

    Li XS, Zhang KJ, Xin Q, Ji CX, Miao YF, Wang L (1996) React Kinet Catal Lett 57:177–182

  52. 52.

    Zhang Y, Xin Q, Rodriguez-Ramos I, Guerrero-Ruiz A (1999) Mater Res Bull 34:145–156

  53. 53.

    Dewangan K, Patil SS, Joag DS, More MA, Gajbhiye NS (2010) J Phys Chem C 114:14710–14715

  54. 54.

    Shi C, Zhu AM, Yang XF, Au CT (2004) Catal Lett 97:9–16

  55. 55.

    Choi J-G, Choi D, Thompson LT (1997) Appl Surf Sci 108:103–111

  56. 56.

    Qi J, Jiang LH, Jiang QA, Wang SL, Sun GQ (2010) J Phys Chem C 114:18159–18166

  57. 57.

    He H, Dai HX, Ngan KY, Au CT (2001) Catal Lett 71:147–153

  58. 58.

    Wang YH, Li W, Zhang MH, Guan NJ, Tao KY (2001) Appl Catal A 215:39–45

  59. 59.

    Li XS, Sheng SS, Chen HR, Ji CX, Zhang YJ, Xin Q (1995) Acta Phys Chim Sin 11:678–680

  60. 60.

    Nagai M, Omi S (1995) Sekiyu Gakkaishi 38:363–373

  61. 61.

    Blaser H-U, Steiner H, Studer M (2009) ChemCatChem 1:210–221

  62. 62.

    Corma A, Gonzalez-Arellano C, Iglesias M, Sanchez F (2009) Appl Catal A 356:99–102

  63. 63.

    Wang XD, Liang MH, Zhang JL, Wang Y (2007) Curr Org Chem 11:299–314

  64. 64.

    Kanth SR, Reddy GV, Rao VVVNSR, Maitraie D, Narsaiah B, Rao PS (2002) Synth Commun 32:2849–2853

  65. 65.

    Sonavane SU, Gawande MB, Deshpande SS, Venkataraman A, Jayaram RV (2007) Catal Commun 8:1803–1806

  66. 66.

    Xiong J, Chen JX, Zhang JY (2007) Catal Commun 8:345–350

  67. 67.

    Cárdenas-Lizana F, Gómez-Quero S, Perret N, Keane MA (2011) Catal Sci Technol 1:652–661

  68. 68.

    Corma A, Serna P, Concepcion P, Calvino JJ (2008) J Am Chem Soc 130:8748–8753

  69. 69.

    Chen YZ, Chen YC (1994) Appl Catal A 115:45–57

  70. 70.

    Coq B, Tijani A, Figueras F (1991) J Mol Catal 68:331–345

  71. 71.

    Tijani A, Coq B, Figueras F (1991) Appl Catal 76:255–266

  72. 72.

    Vishwanathan V, Jayasri V, Basha PM, Mahata N, Sikhwivhilu L, Coville NJ (2008) Catal Commun 9:453–458

  73. 73.

    Ren J, Wang JG, Huo CF, Wen XD, Cao Z, Yuan SP, Li YW, Jiao HJ (2007) Surf Sci 601:1599–1607

  74. 74.

    Deiner LJ, Kang DH, Friend CA (2005) J Phys Chem B 109:12826–12831

  75. 75.

    Cárdenas-Lizana F, Gómez-Quero S, Keane MA (2008) Catal Commun 9:475–481

  76. 76.

    Kosmulski M (2001) Chemical properties of material surfaces, surfactant science series vol 102. Marcel Dekker, New York

  77. 77.

    Geus JW, van Dillen AJ (1999) In: Ertl G, Knözinger H, Weitkamp J (eds) Preparation of solid catalysts. Wiley-VCH, Weinheim

  78. 78.

    Moreau F, Bond GC (2007) Catal Today 122:260–265

  79. 79.

    Kosmulski M (2009) Adv Colloid Interface Sci 152:14–25

  80. 80.

    Moreau F, Bond GC, Taylor AO (2005) J Catal 231:105–114

  81. 81.

    Somodi F, Borbath I, Hegedus M, Tompos A, Sajo IE, Szegedi A, Rojas S, Fierro JLG, Margitfalvi JL (2008) Appl Catal A 347:216–222

  82. 82.

    Postole G, Gervasini A, Guimon C, Auroux A, Bonnetot B (2006) J Phys Chem B 110:12572–12580

  83. 83.

    Silberova BAA, Mul G, Makkee M, Moulijn JA (2006) J Catal 243:171–182

  84. 84.

    Collins SE, Cíes JM, del Río E, López-Haro M, Trasobares S, Calvino JJ, Pintado JM, Bernal S (2007) J Phys Chem C 111:14371–14379

  85. 85.

    Hodge NA, Kiely CJ, Whyman R, Siddiqui MRH, Hutchings GJ, Pankhurst QA, Wagner FE, Rajaram RR, Golunski SE (2002) Catal Today 72:133–144

  86. 86.

    Greenwood NN, Earnshaw A (1997) Chemistry of the elements, 2nd edn. Butterworth-Heinemann, Oxford

  87. 87.

    McEwan L, Julius M, Roberts S, Fletcher JCQ (2010) Gold Bull 43:298–306

  88. 88.

    Claus P, Hofmeister H, Mohr C (2004) Gold Bull 37:181–186

  89. 89.

    Bond G, Louis C, Thompson DT (2006) Catalysis by gold. Imperial College Press, London

  90. 90.

    Corma A, Serna P (2006) Science 313:332

  91. 91.

    Corma A, Serna P (2006) Nat Protoc 1:2590–2595

  92. 92.

    Cárdenas-Lizana F, Gómez-Quero S, Perret N, Keane MA (2009) Gold Bull 42:124–132

  93. 93.

    Corma A, Garcia H (2008) Chem Soc Rev 37:2096–2126

  94. 94.

    Cárdenas-Lizana F, Gómez-Quero S, Keane MA (2008) ChemSusChem 1:215–221

Download references

Acknowledgments

This work was financially supported by EPSRC (Grant 0231 110525) and the Swiss National Science Foundation (Grant 200020-132522/1). EPSRC support for free access to the TEM/SEM facility at the University of St Andrews is also acknowledged.

Author information

Correspondence to Fernando Cárdenas-Lizana or Mark A. Keane.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Perret, N., Cárdenas-Lizana, F., Lamey, D. et al. Effect of Crystallographic Phase (β vs. γ) and Surface Area on Gas Phase Nitroarene Hydrogenation Over Mo2N and Au/Mo2N. Top Catal 55, 955–968 (2012). https://doi.org/10.1007/s11244-012-9881-4

Download citation

Keywords

  • Selective hydrogenation
  • p-Chloronitrobenzene
  • Surface area
  • Crystallographic phase
  • Molybdenum nitride
  • Au/Mo2N