Advertisement

Topics in Catalysis

, Volume 55, Issue 14–15, pp 910–921 | Cite as

Synthesis of Niobium Carbonitride by Thermal Decomposition of Guanidine Oxaloniobate and Its Application to the Hydrodesulfurization of Dibenzothiophene

  • Carlos Alberto Chagas
  • Rene Pfeifer
  • Alexandre B. Rocha
  • Victor Teixeira da Silva
Original Paper

Abstract

A production method that uses lower temperatures than the temperatures of commonly utilized methods (950–1,100 °C) is proposed for the synthesis of niobium carbonitride and niobium carbide. This methodology consists of three stages: (i) the synthesis of guanidine oxaloniobate via a solid-state reaction at 150 °C between monohydrated ammonium oxotris(oxalate)niobate (niobium ammoniacal complex) and guanidine carbonate; (ii) the thermal decomposition of the guanidine oxaloniobate at 400 °C under an inert atmosphere; and (iii) the subsequent decomposition under an inert atmosphere at temperatures varied between 450 and 900 °C. The structure of the guanidine oxaloniobate was also calculated by density functional theory. The characterization results suggest that at a decomposition temperature of 700 °C, niobium carbonitride (NbC x N1−x , x < 1) was formed, which was transformed into NbC at higher temperatures (≥850 °C). From the X-ray refinement results, which were performed using the Rietveld method, the formation of NbC was proposed to occur in stages: oxaloniobate → oxynitride → carbonitride → carbide. The materials synthesized at 600, 650 and 700 °C exhibited steady state activities for more than 24 h in the hydrodesulfurization of dibenzothiophene, which predominantly occurred via the direct desulfurization route.

Keywords

Niobium carbide Niobium carbonitride Hydrodesulfurization Guanidine oxaloniobate 

Notes

Acknowledgments

The authors thank CBMM for kindly supplying the monohydrated ammonium oxotris(oxalate)niobate. C.A.C. would like to thank the CNPq for the awarded scholarship.

References

  1. 1.
    Oyama ST (1992) Catal Today 15:179CrossRefGoogle Scholar
  2. 2.
    Lee JS, Yeom MH, Park KY, Nam IS, Chung JS, Kim YG, Moon SH (1991) J Catal 128:126CrossRefGoogle Scholar
  3. 3.
    Lee JS, Boudart M (1991) Catal Lett 8:107CrossRefGoogle Scholar
  4. 4.
    Ribeiro FH, Boudart M, Dalla Betta RA, Iglesia E (1991) J Catal 130:498CrossRefGoogle Scholar
  5. 5.
    Iglesia E, Ribeiro FH, Boudart M, Baumgartner JE (1992) Catal Today 15:455CrossRefGoogle Scholar
  6. 6.
    Katrib A, Hemming F, Wehrer P, Hilaire L, Maire G (1994) Top Catal 1:75CrossRefGoogle Scholar
  7. 7.
    Kapoor R, Oyama ST, Friihberger B, DeVries BD, Chen JG (1995) Catal Lett 34:179CrossRefGoogle Scholar
  8. 8.
    Ramanathan S, Oyama ST (1995) J Phys Chem 99:16365CrossRefGoogle Scholar
  9. 9.
    Sajkowski DJ, Oyama ST (1996) Appl Catal A 134:339CrossRefGoogle Scholar
  10. 10.
    Wang D, Lunsford JH, Rosynek MP (1996) Top Catal 3:289CrossRefGoogle Scholar
  11. 11.
    Boudart M, Oyama ST, Leclercq L (1981) In: Proceedings, 7th international congress on catalysis, Tokyo 1980, vol 1. Elsevier, Amsterdam, p 578Google Scholar
  12. 12.
    Márquez-Alvarez C, Claridge JB, York APE, Sloan J, Green MLH (1997) Stud Surf Sci Catal 106:485CrossRefGoogle Scholar
  13. 13.
    St. Clair TP, Dandhapani B, Oyama ST (1999) Catal Lett 58:169CrossRefGoogle Scholar
  14. 14.
    Blekkan EA, Pham-Huu C, Ledoux MJ, Guille J (1994) Ind Eng Chem Res 33:1657CrossRefGoogle Scholar
  15. 15.
    Delporte P, Pham-Huu C, Ledoux MJ (1997) Appl Catal A 149:151CrossRefGoogle Scholar
  16. 16.
    Neylon MK, Choi S, Kwon H, Curry KE, Thompson LT (1999) Appl Catal A 183:253CrossRefGoogle Scholar
  17. 17.
    Lamic AF, Pham TLH, Potvin C, Manoli JM, Djéga-Mariadassou G (2005) J Mol Catal A 237:109CrossRefGoogle Scholar
  18. 18.
    Schlatter JC, Oyama ST, Metcalfe JE III, Lambert JM Jr (1988) Ind Eng Chem Res 27:1648CrossRefGoogle Scholar
  19. 19.
    Dhandapani B, St. Clair T, Oyama ST (1998) Appl Catal A 168:219CrossRefGoogle Scholar
  20. 20.
    Szymańska-Kolasa A, Lewandowski M, Sayag C, Djéga-Mariadassou G (2007) Catal Today 119:7CrossRefGoogle Scholar
  21. 21.
    Levy RB, Boudart M (1973) Science 181:547CrossRefGoogle Scholar
  22. 22.
    Furimsky E (2003) Appl Catal A 240:1CrossRefGoogle Scholar
  23. 23.
    Teixeira da Silva VLS, Schmal M, Oyama ST (1996) J Solid State Chem 123:168CrossRefGoogle Scholar
  24. 24.
    Fontes FAO, De Sousa JF, Souza CP, Bezerra MBD, Benachour M (2011) Chem Eng J 175:534CrossRefGoogle Scholar
  25. 25.
    Sherif F, Vreugdenhil W (1996) In: Oyama ST (ed) The chemistry of transition metal carbides and nitrides, 1st edn. Blackie Academic & Professional, LondonGoogle Scholar
  26. 26.
    Wang HM, Wang XH, Zhang MH, Du XY, Li W, Tao KY (2007) Chem Mater 19:1801CrossRefGoogle Scholar
  27. 27.
    Afanasiev P (2002) Inorg Chem 41:5317CrossRefGoogle Scholar
  28. 28.
    Rietveld HM (1969) J Appl Crystallogr 2:65CrossRefGoogle Scholar
  29. 29.
    Jehng J-M, Wachs IE (1991) J Raman Spectrosc 22:83CrossRefGoogle Scholar
  30. 30.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS (1993) Comput Chem 14:1347CrossRefGoogle Scholar
  31. 31.
    Colthup NB, Daly LH, Wiberley SE (1990) Introduction to infrared and Raman spectroscopy, 3rd edn. Academic Press, New YorkGoogle Scholar
  32. 32.
    El-Gamel NAE, Wagler J, Kroke E (2008) J Mol Struct 888:204CrossRefGoogle Scholar
  33. 33.
    Medeiros FFP, Moura MFV, Silva AGP, Souza CP, Gomes KKP, Gomes UU (2006) Braz J Chem Eng 23:531CrossRefGoogle Scholar
  34. 34.
    Kasper E, Schuh A, Roy-Auberger M, Hollander B, Kibbel H (1995) J Cryst Growth 157:68CrossRefGoogle Scholar
  35. 35.
    Chouzier S, Czeri T, Magalie AR, Pichon C, Geantet C, Vrinat M, Afanasiev P (2011) J Solid State Chem 184:2668CrossRefGoogle Scholar
  36. 36.
    Schwartz V, Oyama ST (1997) Chem Mater 9:3052CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Carlos Alberto Chagas
    • 1
  • Rene Pfeifer
    • 2
  • Alexandre B. Rocha
    • 2
  • Victor Teixeira da Silva
    • 1
  1. 1.Programa de Engenharia Química, NUCAT, COPPEUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto de QuímicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations