Advertisement

Topics in Catalysis

, Volume 55, Issue 7–10, pp 680–687 | Cite as

Bifunctional Nanoscopic Catalysts for the One-Pot Synthesis of (±)-Menthol from Citral

  • Alina Negoi
  • Katharina Teinz
  • Erhard Kemnitz
  • Stefan Wuttke
  • Vasile I. Parvulescu
  • Simona M. Coman
Original Paper

Abstract

Active and selective bifunctional Me(Ir, Pd)/beta zeolite and doped nanoscopic hydroxylated fluorides (0.1 % Pd (or Pt)/AlF3) catalysts were developed for the one-pot synthesis of menthols from citral. In the case of fluoride catalysts, the strong electron-withdrawing effect of the dominating fluoride environment depletes the metal surface from electrons and hence, favours the hydrogenation of the C=C bond to citronellal on both Pd and Pt-based catalysts.

Keywords

Noble metals Doped nanoscopic fluorides Sol–gel synthesis Beta zeolite Impregnation Citral Menthol 

Notes

Acknowledgments

Prof. Simona M. Coman thanks UEFISCDI for the financial support (project PN-II-ID-PCE-2011-3-0041, Nr. 321/2011). Katharina Teinz is a stipendiate of the graduate school ‘‘Fluorine as key element’’ (GRK 1582) of Deutsche Forschungsgemeinschaft, DFG.

References

  1. 1.
    Otsuka S, Tani K, Yamagata T, Akutagawa S, Kumobayashi H, Yagi M (1982) EP 68506 to TakasagoGoogle Scholar
  2. 2.
    Vilella IM, Borbáth I, Margitfalvi JL, Lázár K, de Miguel SR, Scelza OA (2007) Appl Catal A Gen 326:37CrossRefGoogle Scholar
  3. 3.
    Álvarez-Rodríguez J, Guerrero-Ruiz A, Rodríguez-Ramos I, Arcoya-Martín A (2005) Catal Today 107–108:302CrossRefGoogle Scholar
  4. 4.
    Manikandan D, Divakar D, Sivakumar T (2008) Catal Lett 123:107CrossRefGoogle Scholar
  5. 5.
    Mikkola J-P, Virtanen P, Karhu H, Salmi T, Murzin DYu (2006) Green Chem 8:197CrossRefGoogle Scholar
  6. 6.
    Aumo J, Oksanen S, Mikkola J-P, Salmi T, Murzin DYu (2005) Ind Eng Chem Res 44:5285CrossRefGoogle Scholar
  7. 7.
    Singh UK, Vannice MA (2001) J Catal 199:73CrossRefGoogle Scholar
  8. 8.
    Galvagno S, Milone C, Donato A, Neri G, Pietropaolo R (1993) Catal Lett 18:349CrossRefGoogle Scholar
  9. 9.
    Vilella IMJ, de Miguel SR, Salinas-Martínez de Lecea C, Linares-Solano Á, Scelza OA (2005) Appl Catal A Gen 281:247CrossRefGoogle Scholar
  10. 10.
    Aggarwal VK, Vennall GP, Newman C (1998) Tetrahedron Lett 39:1997CrossRefGoogle Scholar
  11. 11.
    Kocovský P, Ahmed G, Malkov AV, Steele J (1999) J Org Chem 64:2765CrossRefGoogle Scholar
  12. 12.
    Milone C, Perri A, Pistone A, Neri G, Pistone A, Galvagno S (2002) Appl Catal A 233:151CrossRefGoogle Scholar
  13. 13.
    Coman SM, Patil P, Wuttke S, Kemnitz E (2009) Chem Commun 460Google Scholar
  14. 14.
    Milone C, Gangemi C, Ingoglia R, Neri G, Galvagno S (2000) Appl Catal A 184:89Google Scholar
  15. 15.
    Iosif F, Coman S, Parvulescu V, Grange P, Delsarte S, De Vos D, Jacobs PA (2004) Chem Commun 1292Google Scholar
  16. 16.
    Neatu F, Coman S, Parvulescu VI, Poncelet G, De Vos D, Jacobs P (2009) Top Catal 52:1292CrossRefGoogle Scholar
  17. 17.
    Mertens P, Verpoort F, Parvulescu AN, De Vos D (2006) J Catal 243:7CrossRefGoogle Scholar
  18. 18.
    Trasarti AF, Marchi AJ, Apesteguía CR (2004) J Catal 224:484CrossRefGoogle Scholar
  19. 19.
    Trasarti AF, Marchi AJ, Apesteguía CR (2007) J Catal 247:155CrossRefGoogle Scholar
  20. 20.
    Virtanen P, Karhu H, Toth G, Kordas K, Mikkola J-P (2009) J Catal 263:209CrossRefGoogle Scholar
  21. 21.
    Nie Y, Jaenicke S, Chuah G-K (2009) Chem Eur J 15:1991CrossRefGoogle Scholar
  22. 22.
    Meric P, Yu KMK, Kong ATS, Tsang SC (2006) J Catal 237:330CrossRefGoogle Scholar
  23. 23.
    Delbecq F, Sautet P (1995) J Catal 152:217CrossRefGoogle Scholar
  24. 24.
    Mäki-Arvela P, Tiainen L-P, Lindblad M, Demirkan K, Kumar N, Sjçholm R, Ollonqvist T, Väyrynen J, Salmi T, Murzin DY (2003) Appl Catal A 241:271CrossRefGoogle Scholar
  25. 25.
    Mäki-Arvela P, Tiainen LP, Neyestanaki AK, Sjçholm R, Rantakylä RK, Laine E, Salmi T, Murzin DY (2002) Appl Catal A 237:181CrossRefGoogle Scholar
  26. 26.
    Wuttke S, Coman SM, Scholz G, Kirmse H, Vimont A, Daturi M, Schroeder SLM, Kemnitz E (2008) Chem Eur J 14:11488CrossRefGoogle Scholar
  27. 27.
    Kemnitz E, Wuttke S, Coman SM (2011) Eur J Inorg Chem 31:4773CrossRefGoogle Scholar
  28. 28.
    Negoi A, Wuttke S, Kemnitz E, Macovei D, Parvulescu VI, Teodorescu CM, Coman SM (2010) Angew Chem Int Ed 49:8134CrossRefGoogle Scholar
  29. 29.
    Caballero C, Valencia J, Barrera M, Gil A (2010) Powder Technol 203:412CrossRefGoogle Scholar
  30. 30.
    Nie Y, Chuah G-K, Jaenicke S (2006) Chem Commun 790Google Scholar
  31. 31.
    König R, Scholz G, Pawlik A, Jäger C, van Rossum B, Kemnitz E (2009) J Phys Chem C 113:15576CrossRefGoogle Scholar
  32. 32.
    Stosiek Ch, Scholz G, Schröder SLM, Kemnitz E (2010) Chem Mater 22:2347CrossRefGoogle Scholar
  33. 33.
    Marinelli TBLW, Nabuurs S, Ponec V (1995) J Catal 151:431CrossRefGoogle Scholar
  34. 34.
    Chuah GK, Liu SH, Jaenicke S, Harrison LJ (2001) J Catal 200:352CrossRefGoogle Scholar
  35. 35.
    De Bruyn M, Coman S, Bota R, Parvulescu VI, De Vos DE, Jacobs PA (2003) Angew Chem Int Ed 115:5491CrossRefGoogle Scholar
  36. 36.
    Weisz PB (1973) Science 179:433CrossRefGoogle Scholar
  37. 37.
    Snyder LR, Kirkland JJ (1979) Introduction to modern liquid chromatography. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of ChemistryUniversity of BucharestBucharestRomania
  2. 2.Institut fur Chemie, Humboldt-Universitat zu BerlinBerlinGermany
  3. 3.Department of ChemistryUniversity of Munich (LMU)MunichGermany

Personalised recommendations