Topics in Catalysis

, Volume 55, Issue 7–10, pp 580–586 | Cite as

Silica-Supported Amine Catalysts for Carbon–Carbon Addition Reactions

  • Ernesto Silva M
  • Srikanth Chakravartula S
  • Steven S. C. Chuang
Original Paper

Abstract

Basic catalysts for carbon–carbon addition reactions were synthesized by immobilization of amine species on silica supports. Tetraethylenepentamine was impregnated and immobilized on amorphous silica (SiO2) and SBA-15 using an epoxy resin. The basicity of the catalysts was determined by adsorption–desorption of CO2 and the degree of immobilization was evaluated by FTIR. The catalytic activity towards the Claisen condensation reaction of methyl benzoate and methyl ethyl ketone was evaluated by an in-situ FTIR micro-scale reactor. A mechanism is proposed to show that the catalysts promote the formation of β-diketone and methanol; the effects of the support and amine immobilization degree are discussed.

Keywords

Basic catalyst Claisen condensation Immobilization FTIR 

Notes

Acknowledgments

This work was supported by the FirstEnergy Advanced Energy Research Center.

References

  1. 1.
    Chang ACC et al (2003) Energy Fuels 17(2):468–473CrossRefGoogle Scholar
  2. 2.
    Lu Q et al (2010) Ind Eng Chem Res 49(6):2573–2580CrossRefGoogle Scholar
  3. 3.
    Zhu J et al (2011) Chem Mater 23(8):2062–2067CrossRefGoogle Scholar
  4. 4.
    Chary K, Srikanth C (2009) Catal Lett 128(1):164–170CrossRefGoogle Scholar
  5. 5.
    Zelenak V et al (2008) Micropor Mesopor Mater 116(1–3):358–364CrossRefGoogle Scholar
  6. 6.
    Sujandi E, Prasetyanto EA, Park S-E (2008) Appl Catal A 350(2):244–251CrossRefGoogle Scholar
  7. 7.
    Cheng S, Wang X, Chen S-Y (2009) Top Catal 52(6–7):681–687CrossRefGoogle Scholar
  8. 8.
    Saravanamurugan S et al (2007) Catal Commun 9(1):158–163CrossRefGoogle Scholar
  9. 9.
    Lu Q et al (2009) J Anal Appl Pyrolysis 84(2):131–138CrossRefGoogle Scholar
  10. 10.
    Shahbazi A, Younesi H, Badiei A (2011) Chem Eng J (Amsterdam, Neth) 168(2):505–518Google Scholar
  11. 11.
    Zhao Y et al (2011) Mater Lett 65(6):1045–1047CrossRefGoogle Scholar
  12. 12.
    Khatri RA et al (2005) Ind Eng Chem Res 44(10):3702–3708CrossRefGoogle Scholar
  13. 13.
    Wang X et al (2009) J Phys Chem C 113(17):7260–7268CrossRefGoogle Scholar
  14. 14.
    Ebrahimzadeh H et al (2010) Microchim Acta 170(1–2):171–178CrossRefGoogle Scholar
  15. 15.
    Bridgwater AV, Meier D, Radlein D (1999) Org Geochem 30(12):1479–1493CrossRefGoogle Scholar
  16. 16.
    Mohan D, Pittman CU Jr, Steele PH (2006) Energy Fuels 20(3):848–889CrossRefGoogle Scholar
  17. 17.
    Wildschut J, Melian-Cabrera I, Heeres HJ (2010) Appl Catal B 99(1–2):298–306Google Scholar
  18. 18.
    Hu H et al (2005) J Phys Chem B 109(10):4285–4289CrossRefGoogle Scholar
  19. 19.
    Lopez J et al (2002) J Catal 208(1):30–37CrossRefGoogle Scholar
  20. 20.
    Motokura K, Tada M, Iwasawa Y (2009) J Am Chem Soc 131(23):7944–7945CrossRefGoogle Scholar
  21. 21.
    Parida KM, Rath D, Mol J (2009) Catal A Chem 310(1–2):93–100Google Scholar
  22. 22.
    Yu X et al (2011) J Solid State Chem 184(2):289–295CrossRefGoogle Scholar
  23. 23.
    Inaki Y et al (2001) Chem Commun 22:2358–2359CrossRefGoogle Scholar
  24. 24.
    Cherkasov AR, Jonsson M, Galkin V (1999) J Mol Graph Model 17(1):28–42CrossRefGoogle Scholar
  25. 25.
    Srivastava R, Mol J (2007) Catal A Chem 264(1–2):146–152CrossRefGoogle Scholar
  26. 26.
    McKittrick MW, Jones CW (2003) Chem Mater 15(5):1132–1139CrossRefGoogle Scholar
  27. 27.
    Nee M et al (1982) Org Magn Reson 18(3):125–127CrossRefGoogle Scholar
  28. 28.
    Fang J et al (2010) J Phys Chem C 114(17):7940–7948CrossRefGoogle Scholar
  29. 29.
    Xu J et al (2010) Bioresour Technol 101(24):9803–9806CrossRefGoogle Scholar
  30. 30.
    Tanthana J, Chuang SSC (2010) ChemSusChem 3(8):957–964CrossRefGoogle Scholar
  31. 31.
    Ahmed A et al (2010) Philos Trans R Soc A 368(1927):4351–4370CrossRefGoogle Scholar
  32. 32.
    Srikanth Chakravartula S, SSCC (2012) ChemSusChem. doi: 10.1002/cssc.201100662
  33. 33.
    McMurry J (2010) Organic chemistry, 8th edn. Brooks/Cole CENGAGE learning, BelmontGoogle Scholar
  34. 34.
    Khatri RA et al (2006) Energy Fuels 20(4):1514–1520CrossRefGoogle Scholar
  35. 35.
    Colthup NB, Daly LH, Wiberley SE (1990) Introduction to infrared and Raman spectroscopy, 3rd edn. Elsevier Science, AmsterdamGoogle Scholar
  36. 36.
    Silverstein RM, Webster FX, Kiemle DJ (2005) Spectrometric identification of organic compounds, seventh edition. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ernesto Silva M
    • 1
  • Srikanth Chakravartula S
    • 1
  • Steven S. C. Chuang
    • 1
  1. 1.Department of Polymer ScienceFirst Energy Advanced Energy Research Center, The University of AkronAkronUSA

Personalised recommendations