Topics in Catalysis

, Volume 55, Issue 7–10, pp 439–445 | Cite as

Homogeneous Catalytic Carbonylation and Hydroformylation for Synthesis of Industrial Chemicals

  • Raghunath V. Chaudhari
Original Paper


This brief review reports recent developments in homogeneous catalysis for synthesis of chemicals with a focus on new synthetic routes, clean catalytic alternatives and challenges in their industrial applications. Particularly, examples of hydroformylation, carbonylation, oxidative carbonylation and tandem synthetic approaches have been discussed. Challenges for future work and difficulties in commercialization are highlighted.


Homogeneous catalysis Carbonylation Hydroformylation Oxidative carbonylation 


  1. 1.
    Parshall GW (1980) Homogeneous catalysis. Wiley–Interscience, New YorkGoogle Scholar
  2. 2.
    Weissermehl K, Arpe H –J (2003) Industrial Organic Chemistry. Wiley–VCH, WeinheimGoogle Scholar
  3. 3.
    Beller M, Bohm C (eds) (2004) Transition metals for organic synthesis: building blocks and fine chemicals, vols 1&2. Wiley–VCH, WeinheimGoogle Scholar
  4. 4.
    Cornils B, Herrmann WA (eds) (1998) Aqueous-phase organometallic catalysis. VCH, WeinheimGoogle Scholar
  5. 5.
    Mills PL, Chaudhari RV (1999) Catal Today 48:17CrossRefGoogle Scholar
  6. 6.
    Chaudhari RV (2008) Curr Opin Drug Discov Dev 11(6):820Google Scholar
  7. 7.
    Church TL, Getzler YDYL, Byrne CM, Coates GW (2007) Chem Comm 7:657CrossRefGoogle Scholar
  8. 8.
    Barbaro P, Liguori F (eds) (2010) Heterogenized homogeneous catalysts for fine chemicals production: materials and processes. Springer, DordrechtGoogle Scholar
  9. 9.
    Janssen M, Muller C, Vogt D (2011) Green Chem 13:2247CrossRefGoogle Scholar
  10. 10.
    van Leeuwen PWNM, Claver C (2001) Rhodium catalyzed hydroformylation. Kluwer, DordrechtGoogle Scholar
  11. 11.
    Borole YL, Chaudhari RV (2005) Ind Eng Chem Res 44:9601CrossRefGoogle Scholar
  12. 12.
    Arntz D, Wiegand N (1991) Degussa Aktiengesellschaft, US Patent 5,015,789Google Scholar
  13. 13.
    Powell JB, Slaugh LH, Forschner TC, Weider P (1996) US Patent 5,545,766Google Scholar
  14. 14.
    Himmele W, Walldorf W, Quila R (1972) US Patent 3,661,890, BASF, GermanyGoogle Scholar
  15. 15.
    Fitton P, Moffet H (1978) US Patent 4,124,619, Hoffmann-La Roche Inc.Google Scholar
  16. 16.
    Chansarkar R, Kelkar AA, Chaudhari RV (2007) Ind Eng Chem Res 46(25):8629CrossRefGoogle Scholar
  17. 17.
    Rajurkar KB, Tonde SS, Didgikar MR, Joshi SS, Chaudhari RV (2007) Ind Eng Chem Res 46(25):8480CrossRefGoogle Scholar
  18. 18.
    Deshpande RM, Diwakar MM, Mahajan AN, Chaudhari RV (2004) J Mol Catal A: Chem 211:49CrossRefGoogle Scholar
  19. 19.
    Falbe J (1980) New synthesis with carbon monoxide. Springer, BerlinCrossRefGoogle Scholar
  20. 20.
    Maitlis PM, Haynes A, SunleyGJ, Howard MJ (1996) J Chem Soc Dalton Trans. 2187Google Scholar
  21. 21.
    Haynes A (2010) In: Gates B, Knoezinger H, Jentoft FC (eds) “Catalytic methanol carbonylation” in advances in catalysis. vol 1 Elsevier, AmsterdamGoogle Scholar
  22. 22.
    Kelkar AA, Jaganathan R, Kolhe DS, Chaudhari RV (1990) US Patent 4,902,659Google Scholar
  23. 23.
    Johi SS, Kelkar AA, Divekar SS, Chaudhari RV (2005) US Patent 6,858,753 Google Scholar
  24. 24.
    Yang J, Haynes A, Maitlis PM (1999) Chem Commun 2:179CrossRefGoogle Scholar
  25. 25.
    Tonde SS, Kelkar AA, Bhadbhade MM, Chaudhari RV (2005) J Organomet Chem 690:1677CrossRefGoogle Scholar
  26. 26.
    Sarkar BR, Chaudhari RV (2005) Catal Surveys Asia 9(3):193CrossRefGoogle Scholar
  27. 27.
    Armor JN (1991) Appl Catal 78:141CrossRefGoogle Scholar
  28. 28.
    Elango V, Murphy MA, Mott GN, Zey EG, Smith BL, Moss GL (1990) Eur Patent 400 892Google Scholar
  29. 29.
    Seayad A, Jayasree S, Chaudhari RV (1999) Catal Lett 61:99CrossRefGoogle Scholar
  30. 30.
    Seayad A, Jayasree S, Chaudhari RV (1999) Org Lett 1(3):459CrossRefGoogle Scholar
  31. 31.
    Jayasree S, Seayad A, Sarkar BR, Chaudhari RV (2002) J Mol Catal A: Chem 181:221CrossRefGoogle Scholar
  32. 32.
    Mukhopadhyay K, Sarkar BR, Chaudhari RV (2002) J Am Chem Soc 124:9692CrossRefGoogle Scholar
  33. 33.
    Sarkar BR, Chaudhari RV (2006) J Catal 242:231CrossRefGoogle Scholar
  34. 34.
    Lu SM, Alper H (2008) J Am Chem Soc 130(20):6451CrossRefGoogle Scholar
  35. 35.
    Kramer JW, Joh DY, Coates GW ) (2007) Org Lett 9(26):5581Google Scholar
  36. 36.
    Adjelkovic M, Benardeau A, Chaput E, Hebeisen P, Nettekoven M, Sander UO, Panousis CG, Roever S (2008) US 20080027218Google Scholar
  37. 37.
    Liu Q, Zhang H, Lei A (2011) Angew Chem Int Ed 50:10788CrossRefGoogle Scholar
  38. 38.
    Delledonne D, Rivetti F, Romano U (2001) App Catal A: Gen 221:241CrossRefGoogle Scholar
  39. 39.
    Gupte SP, Kelkar AA, Sabapathy SK, Bhanage BM, Qureshi MS, Moasser B, Pressman EJ, Sivaram S, Avadhani CV, Chaudhari RV (2001) US Patent 6,222,022Google Scholar
  40. 40.
    Beller M (2008) Eur J Lipid Sci Techol 110:789CrossRefGoogle Scholar
  41. 41.
    Brem N, Lutz F, Sundermann A, Schunk SA (2010) Top Catal 53:28CrossRefGoogle Scholar
  42. 42.
    Chalid M, Broekhuis AA, Heeres HJ (2011) J Mol Catal A Chem 341:14CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Chemical & Petroleum Engineering DepartmentCentre for Environmentally Beneficial Catalysis, University of KansasLawrenceUSA

Personalised recommendations