Topics in Catalysis

, Volume 55, Issue 5–6, pp 280–289 | Cite as

Density Functional Theory Study of Selectivity Considerations for C–C Versus C–O Bond Scission in Glycerol Decomposition on Pt(111)

Original Paper


Glycerol decomposition via a combination of dehydrogenation, C–C bond scission, and C–O bond scission reactions is examined on Pt(111) with periodic Density Functional Theory (DFT) calculations. Building upon a previous study focused on C–C bond scission in glycerol, the current work presents a first analysis of the competition between C–O and C–C bond cleavage in this reaction network. The thermochemistry of various species produced from C–O bond breaking in glycerol dehydrogenation intermediates is estimated using an extension of a previously introduced empirical correlation scheme, with parameters fit to DFT calculations. Brønsted–Evans–Polanyi (BEP) relationships are then used to estimate the kinetics of C–O bond breaking. When combined with the previous results, the thermochemical and kinetic analyses imply that, while C–O bond scission may be competitive with C–C bond scission during the early stages of glycerol dehydrogenation, the overall rates are likely to be very low. Later in the dehydrogenation process, where rates will be much higher, transition states for C–C bond scission involving decarbonylation are much lower in energy than are the corresponding transition states for C–O bond breaking, implying that the selectivity for C–C scission will be high for glycerol decomposition on smooth platinum surfaces. It is anticipated that the correlation schemes described in this work will provide an efficient strategy for estimating thermochemical and kinetic energetics for a variety of elementary bond breaking processes on Pt(111) and may ultimately facilitate computational catalyst design for these and related catalytic processes.


Density functional theory Scaling relationships Biomass Glycerol Hydrogen production Pt(111) Selectivity Reforming 



This study was supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Use of the Center for Nanoscale Materials (CNM) is supported by the Office of Science of the US Department of Energy under contract no. DE-AC02-06CH11357. We acknowledge grants of computer time from EMSL, a national scientific user facility located at Pacific Northwest National Laboratory, and the Argonne Laboratory Computing Resource Center (LCRC). This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Supplementary material

11244_2012_9806_MOESM1_ESM.docx (435 kb)
Supplementary material 1 (DOCX 435 kb)


  1. 1.
    Chheda JN, Huber GW, Dumesic JA (2007) Angew Chem Int Ed 46:7164CrossRefGoogle Scholar
  2. 2.
    Pagliaro M, Ciriminna R, Kimura H, Rossi M, Della Pina C (2007) Angew Chem Int Ed 46:4434CrossRefGoogle Scholar
  3. 3.
    Corma A, Huber GW, Sauvanauda L, O’Connor P (2008) J Catal 257:163CrossRefGoogle Scholar
  4. 4.
    Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Green Chem 10:13CrossRefGoogle Scholar
  5. 5.
    Zhou CHC, Beltramini JN, Fan YX, Lu GQM (2008) Chem Soc Rev 37:527CrossRefGoogle Scholar
  6. 6.
    Brandner A, Lehnert K, Bienholz A, Lucas M, Claus P (2009) Top Catal 52:278CrossRefGoogle Scholar
  7. 7.
    Cortright RD, Davda RR, Dumesic JA (2002) Nature 418:964CrossRefGoogle Scholar
  8. 8.
    Klouz V, Fierro V, Denton P, Katz H, Lisse JP, Bouvot-Mauduit S, Mirodatos C (2002) J Power Sources 105:26CrossRefGoogle Scholar
  9. 9.
    Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA (2003) Appl Catal B Environ 43:13CrossRefGoogle Scholar
  10. 10.
    Huber GW, Shabaker JW, Dumesic JA (2003) Sci 300:2075CrossRefGoogle Scholar
  11. 11.
    Soares RR, Simonetti DA, Dumesic JA (2006) Angew Chem Int Ed 45:3982CrossRefGoogle Scholar
  12. 12.
    Lulianelli A, Seelam PK, Liguori S, Longo T, Keiski R, Calabro V, Basile A (2011) Int J Hydrogen Energy 36:3827CrossRefGoogle Scholar
  13. 13.
    Dave CD, Pant KK (2011) Renew Energy 36:3195CrossRefGoogle Scholar
  14. 14.
    Gong CS, Du JX, Cao NJ, Tsao GT (2000) Appl Biochem Biotechnol 84–6:543CrossRefGoogle Scholar
  15. 15.
    Wilson EK (2002) Chem Eng News 80:46CrossRefGoogle Scholar
  16. 16.
    McCoy M (2006) Chem Eng News 84:33CrossRefGoogle Scholar
  17. 17.
    Morison LR (2000) Kirk–Othmer Encyclopedia of Chemical Technology. Wiley, New YorkGoogle Scholar
  18. 18.
    Shabaker JW, Huber GW, Dumesic JA (2004) J Catal 222:180CrossRefGoogle Scholar
  19. 19.
    Maris EP, Davis RJ (2007) J Catal 249:328CrossRefGoogle Scholar
  20. 20.
    Skoplyak O, Menning CA, Barteau MA, Chen JGG (2008) Top Catal 51:49CrossRefGoogle Scholar
  21. 21.
    Kunkes EL, Soares RR, Simonetti DA, Dumesic JA (2009) Appl Catal B Environ 90:693CrossRefGoogle Scholar
  22. 22.
    Wawrzetz A, Peng B, Hrabar A, Jentys A, Lemonidou AA, Lercher JA (2010) J Catal 269:411CrossRefGoogle Scholar
  23. 23.
    Pompeo F, Santori G, Nichio NN (2010) Int J Hydrogen Energy 35:8912CrossRefGoogle Scholar
  24. 24.
    Brown JC, Gulari E (2004) Catal Commun 5:431CrossRefGoogle Scholar
  25. 25.
    Shabaker JW, Davda RR, Huber GW, Cortright RD, Dumesic JA (2003) J Catal 215:344CrossRefGoogle Scholar
  26. 26.
    Greeley J, Mavrikakis M (2002) J Am Chem Soc 124:7193CrossRefGoogle Scholar
  27. 27.
    Alcala R, Mavrikakis M, Dumesic JA (2003) J Catal 218:178CrossRefGoogle Scholar
  28. 28.
    Greeley J, Mavrikakis M (2004) J Am Chem Soc 126:3910CrossRefGoogle Scholar
  29. 29.
    Kandoi S, Greeley J, Simonetti D, Shabaker J, Dumesic JA, Mavrikakis M (2010) J Phys Chem C 115:961CrossRefGoogle Scholar
  30. 30.
    Salciccioli M, Yu W, Barteau MA, Chen JG, Vlachos DG (2011) J Am Chem Soc 133:7996CrossRefGoogle Scholar
  31. 31.
    Chen Y, Salciccioli M, Vlachos DG (2011) J Phys Chem C 115:18707Google Scholar
  32. 32.
    Liu B, Greeley JP (2011) J Phys Chem C 115:19702CrossRefGoogle Scholar
  33. 33.
    Ferrin P, Simonetti D, Kandoi S, Kunkes E, Dumesic JA, Norskov JK, Mavrikakis M (2009) J Am Chem Soc 131:5809CrossRefGoogle Scholar
  34. 34.
    Skoplyak O, Barteau MA, Chen JG (2008) ChemSusChem 1:524CrossRefGoogle Scholar
  35. 35.
    Auneau F, Michel C, Delbecq F, Pinel C, Sautet P (2011) Chem Eur J 17:14288CrossRefGoogle Scholar
  36. 36.
    Kresse G, Hafner J (1993) Phys Rev B 47:558CrossRefGoogle Scholar
  37. 37.
    Kresse G, Hafner J (1994) Phys Rev B 49:14251CrossRefGoogle Scholar
  38. 38.
    Kresse G, Furthmuller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  39. 39.
    Kresse G, Furthmuller J (1996) Comput Mater Sci 6:15CrossRefGoogle Scholar
  40. 40.
    Blochl PE (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
  41. 41.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758CrossRefGoogle Scholar
  42. 42.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671CrossRefGoogle Scholar
  43. 43.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1993) Phys Rev B 48:4978CrossRefGoogle Scholar
  44. 44.
    Kittel C (1996) Introduction to solid state Physics. John Wiley, New YorkGoogle Scholar
  45. 45.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  46. 46.
    Methfessel M, Paxton AT (1989) Phys Rev B 40:3616CrossRefGoogle Scholar
  47. 47.
    Makov G, Payne MC (1995) Phys Rev B 51:4014CrossRefGoogle Scholar
  48. 48.
    Henkelman G, Johannesson G, Jonsson H (2000) Progress on theoretical chemistry and physics. Kluwer, New York, p 269Google Scholar
  49. 49.
    Henkelman G, Jonsson H (2000) J Chem Phys 113:9978CrossRefGoogle Scholar
  50. 50.
    Henkelman G, Jonsson H (1999) J Chem Phys 111:7010CrossRefGoogle Scholar
  51. 51.
    Olsen RA, Kroes GJ, Henkelman G, Arnaldsson A, Jonsson H (2004) J Chem Phys 121:9776CrossRefGoogle Scholar
  52. 52.
    Shustorovich E (1984) J Am Chem Soc 106:6479CrossRefGoogle Scholar
  53. 53.
    Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter TR, Moses PG, Skulason E, Bligaard T, NørskovJ K (2007) Phys Rev Lett 99:016105CrossRefGoogle Scholar
  54. 54.
    Greeley J, Mavrikakis M (2002) J Catal 208:291CrossRefGoogle Scholar
  55. 55.
    Salciccioli M, Chen Y, Vlachos DG (2010) J Phys Chem C 114:20155CrossRefGoogle Scholar
  56. 56.
    Daniel OM, DeLaRiva A, Kunkes EL, Datye AK, Dumesic JA, Davis RJ (2010) Chemcatchem 2:1107CrossRefGoogle Scholar
  57. 57.
    Maris EP, Ketchie WC, Murayama M, Davis RJ (2007) J Catal 251:281CrossRefGoogle Scholar
  58. 58.
    Nakagawa Y, Shinmi Y, Koso S, Tomishige K (2010) J Catal 272:191CrossRefGoogle Scholar
  59. 59.
    Chia M, Pagan-Torres YJ, Hibbitts D, Tan Q, Pham HN, Datye AK, Neurock M, Davis RJ, Dumesic JA (2011) J Am Chem Soc 133:12675CrossRefGoogle Scholar
  60. 60.
    Miyazawa T, Kusunoki Y, Kunimori K, Tomishige K (2006) J Catal 240:213CrossRefGoogle Scholar
  61. 61.
    Gandarias I, Arias PL, Requies J, Guemez MB, Fierro JLG (2010) Appl Catal B Environ 97:248CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media (outside USA) 2012

Authors and Affiliations

  1. 1.Center for Nanoscale MaterialsArgonne National LaboratoryArgonneUSA

Personalised recommendations