Topics in Catalysis

, Volume 55, Issue 5–6, pp 402–417 | Cite as

Construction of New Electronic Density Functionals with Error Estimation Through Fitting

  • V. Petzold
  • T. Bligaard
  • K. W. Jacobsen
Original Paper


We investigate the possibilities and limitations for the development of new electronic density functionals through large-scale fitting to databases of binding energies obtained experimentally or through high-quality calculations. We show that databases with up to a few hundred entries allow for up to of the order ten parameters to be adjusted in the exchange enhancement factor. The transferability of models between data is analyzed, and it is shown to be difficult to transfer a model trained exclusively on molecular atomization energies to the treatment of chemisorption systems.


Density functional theory Exchange-correlation functionals Error estimation Model transferability Sloppy models Chemisorption 



We thank James P. Sethna, Jens K. Nørskov, Karoliina Honkala, Andreas Møgelhøj, Jess Wellendorff, and Keld T. Lundgaard for many inspiring discussions. The authors acknowledge support from the Danish Center for Scientific Computing and the U.S. Department of Energy—Office of Basic Energy Sciences through the funding of SUNCAT. The Center for Atomic-scale Materials Design is sponsored by the Lundbeck Foundation.


  1. 1.
    Hohenberg P, Kohn W (1964) Phys Rev 136:864CrossRefGoogle Scholar
  2. 2.
    Perdew JP, Schmidt K (2001) Density functional theory and its application to materials. AIP Press, MelvilleGoogle Scholar
  3. 3.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  4. 4.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  5. 5.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  6. 6.
    Jaynes ET (2003) Probability theory: the logic of science. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  7. 7.
    Sivia D, Skilling J (2006) Data analysis: a Bayesian tutorial. Oxford University Press, OxfordGoogle Scholar
  8. 8.
    Bishop CM (2006) Pattern recognition and machine learning. Springer, BerlinGoogle Scholar
  9. 9.
    Brown KS, Sethna JP (2003) Phys Rev E 68:21904CrossRefGoogle Scholar
  10. 10.
    Efron B (1983) J Am Stat Assoc 78:316Google Scholar
  11. 11.
    Hesterberg T, Moore DS, Monaghan S, Clipson A, Epstein R (2005) Bootstrap methods and permutation tests. In: Introduction to the practice of statistics, chap 14, 5th edn. W.H. Free- man, New YorkGoogle Scholar
  12. 12.
    Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer Series in Statistics. Springer, New YorkGoogle Scholar
  13. 13.
    Frederiksen SL, Jacobsen KW, Brown KS, Sethna JP (2004) Phys Rev Lett 93(16):165501CrossRefGoogle Scholar
  14. 14.
    Mortensen JJ, Kaasbjerg K, Frederiksen SL, Nørskov JK, Sethna JP, Jacobsen KW (2005) Phys Rev Lett 95(21):216401CrossRefGoogle Scholar
  15. 15.
    Toivanen J, Dobaczewski J, Kortelainen M, Mizuyama K (2008) Phys Rev C 78:34306CrossRefGoogle Scholar
  16. 16.
    Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) J Chem Phys 106:1063CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Staroverov VN, Scuseria GE, Tao JM, Perdew JP (2003) J Chem Phys 119:12129CrossRefGoogle Scholar
  19. 19.
    Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59:7413CrossRefGoogle Scholar
  20. 20.
    Mortensen JJ, Ganduglia-Pirovano MV, Hansen LB, Hammer B, Stoltze P, Nørskov JK (1999) Surf Sci 422:8CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Mortensen JJ, Hansen LB, Jacobsen KW (2005) Phys Rev B 71:035109CrossRefGoogle Scholar
  23. 23.
    Blöchl PE, Forst CJ, Schimpl J (2003) Bull Mater Sci 26:33Google Scholar
  24. 24.
    Enkovaara J, Rostgaard C, Mortensen JJ, Chen J, Dulak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen HA, Kristoffersen HH, Kuisma M, Larsen AH, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses PG, Ojanen J, Olsen T, Petzold V, Romero NA, Stausholm-Møller J, Strange M, Tritsaris GA, Vanin M, Walter M, Hammer B, Hakkinen H, Madsen GKH, Nieminen RM, Nørskov JK, Puska M, Rantala TT, Schiøtz J, Thygesen KS, Jacobsen KW (2010) J Phys 22:253202Google Scholar
  25. 25.
    Madsen GKH (2007) Phys Rev B 75:195108CrossRefGoogle Scholar
  26. 26.
    Tipping ME (2004) Advanced lectures on machine learning. Springer, New York, pp 41–62CrossRefGoogle Scholar
  27. 27.
    Petzold V (2010) Ph.D. thesis, CAMD, Technical University of DenmarkGoogle Scholar
  28. 28.
    Honkala K, Hellman A, Remediakis IN, Logadottir A, Carlsson A, Dahl S, Christensen CH, Nørskov JK (2005) Science 307:555CrossRefGoogle Scholar
  29. 29.
    Dahl S, Logadottir A, Egeberg RC, Larsen JH, Chorkendorff I, Törnqvist E, Nørskov JK (1999) Phys Rev Lett 83:1814CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Center for Atomistic-scale Materials Design (CAMD), Department of Physics, Building 307, Nano DTUTechnical University of DenmarkLyngbyDenmark
  2. 2.SUNCAT Center for Interface Science and CatalysisSLAC National Accelerator LaboratoryMenlo ParkUSA

Personalised recommendations