Topics in Catalysis

, Volume 55, Issue 5–6, pp 336–344 | Cite as

Search Directions for Direct H2O2 Synthesis Catalysts Starting from Au12 Nanoclusters

  • L. C. Grabow
  • B. Hvolbæk
  • H. Falsig
  • J. K. Nørskov
Original Paper


We present density functional theory calculations on the direct synthesis of H2O2 from H2 and O2 over an Au12 corner model of a gold nanoparticle. We first show a simple route for the direct formation of H2O2 over a gold nanocatalyst, by studying the energetics of 20 possible elementary reactions involved in the oxidation of H2 by O2. The unwanted side reaction to H2O is also considered. Next we evaluate the degree of catalyst control and address the factors controlling the activity and the selectivity. By combining well-known energy scaling relations with microkinetic modeling, we show that the rate of H2O2 and H2O formation can be determined from a single descriptor, namely, the binding energy of oxygen (EO). Our model predicts the search direction starting from an Au12 nanocluster for an optimal catalyst in terms of activity and selectivity for direct H2O2 synthesis. Taking also stability considerations into account, we find that binary Au–Pd and Au–Ag alloys are most suited for this reaction.


Heterogeneous catalysis Au Pd Ag H2O2 synthesis Nanocatalysis Degree of catalyst control Selectivity DFT 



Support from the Global Climate Energy Project (GCEP) at Stanford University, the Center for Atomic-scale Materials Design, funded by the Lundbeck Foundation, and the Catalysis for Sustainable Energy (CASE) initiative which is funded by the Danish Ministry of Science, Technology, and Innovation is greatly acknowledged. We thank Dr. Felix Studt for sharing his data on L12 bulk alloys.


  1. 1.
    Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 405–408Google Scholar
  2. 2.
    Prati L (1998) J Catal 176:552–560CrossRefGoogle Scholar
  3. 3.
    Hutchings G (1985) J Catal 96:292–295CrossRefGoogle Scholar
  4. 4.
    Christensen CH, Jørgensen B, Rass-Hansen J, Egeblad K, Madsen R, Klitgaard SK, Hansen SM, Hansen MR, Andersen HC, Riisager A (2006) Angew Chem 118:4764–4767CrossRefGoogle Scholar
  5. 5.
    Abad A, Concepción P, Corma A, García H (2005) Angew Chem Int Ed 44:4066–4069CrossRefGoogle Scholar
  6. 6.
    Landon P, Collier PJ, Papworth AJ, Kiely CJ, Hutchings CJ (2002) Chemical communications. Cambridge, England, pp 2058–2059Google Scholar
  7. 7.
    Edwards J, Ntainjua EN, Carley A, Herzing A, Kiely C, Hutchings G (2009) Angew Chem Int Ed 48:8512–8515CrossRefGoogle Scholar
  8. 8.
    Ford DC, Nilekar AU, Xu Y, Mavrikakis M (2010) Surf Sci 604:1565–1575CrossRefGoogle Scholar
  9. 9.
    Todorovic R, Meyer RJ (2011) Catal Today 160:242–248CrossRefGoogle Scholar
  10. 10.
    Edwards JK, Solsona B, Carley AF, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ et al (2009) Science 323:1037CrossRefGoogle Scholar
  11. 11.
    Solsona BE, Edwards JK, Landon P, Carley AF, Herzing A, Kiely CJ, Hutchings GJ (2006) Chem Mater 18:2689–2695CrossRefGoogle Scholar
  12. 12.
    Ntainjua EN, Piccinini M, Pritchard JC, Edwards JK, Carley AF, Kiely CJ, Hutchings GJ (2011) Catal Today 178:47–50CrossRefGoogle Scholar
  13. 13.
    Edwards JK, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ (2008) Faraday Discuss 138:225CrossRefGoogle Scholar
  14. 14.
    Hutchings GJ (2008) Chem Commun 7345:1148–1164CrossRefGoogle Scholar
  15. 15.
    Edwards JK, Solsona B, Landon P, Carley AF, Herzing A, Watanabe M, Kiely CJ, Hutchings GJ (2005) J Mater Chem 15:4595CrossRefGoogle Scholar
  16. 16.
    Edwards J, Solsona B, Landon P, Carley A, Herzing A, Kiely C, Hutchings G (2005) J Catal 236:69–79CrossRefGoogle Scholar
  17. 17.
    Samanta C (2008) Appl Catal A 350:133–149CrossRefGoogle Scholar
  18. 18.
    Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Nat Chem 1:37–46CrossRefGoogle Scholar
  19. 19.
    Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T (2011) Proc Natl Acad Sci U S A 108:937–943CrossRefGoogle Scholar
  20. 20.
    Kacprzak KA, Akola J, Häkkinen H (2009) Phys Chem Chem Phys 11:6359–6364CrossRefGoogle Scholar
  21. 21.
    Ham HC, Hwang GS, Han J, Nam SW, Lim TH (2009) J Phys Chem C 113:12943–12945Google Scholar
  22. 22.
    Staykov A, Kamachi T, Ishihara T, Yoshizawa K (2008) J Phys Chem C 112:19501–19505Google Scholar
  23. 23.
    Barton DG, Podkolzin SG (2005) J Phys Chem B 109:2262–2274Google Scholar
  24. 24.
    Nørskov JK, Bligaard T, Kleis J (2009) Science 324:1655–1656CrossRefGoogle Scholar
  25. 25.
    Bahn SR, Jacobsen KW (2002) Comput Sci Eng 4:56–66CrossRefGoogle Scholar
  26. 26.
    Hammer B, Hansen L, Nørskov J (1999) Phys Rev B 59:7413–7421Google Scholar
  27. 27.
    Vanderbilt D (1990) Phys Rev B 41:7892–7895Google Scholar
  28. 28.
    Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113:9901CrossRefGoogle Scholar
  29. 29.
    NIST chemistry WebBook. (2011)
  30. 30.
    Falsig H, Hvolbæk B, Kristensen IS, Jiang T, Bligaard T, Christensen CH, Nørskov JK (2008) Angew Chem Inter Ed 47:4835–4839CrossRefGoogle Scholar
  31. 31.
    Jiang T, Mowbray DJ, Dobrin S, Falsig H, Hvolbæk B, Bligaard T, Nørskov JK (2009) J Phys Chem C 113:10548–10553Google Scholar
  32. 32.
    Wang S, Petzold V, Tripkovic V, Kleis J, Howalt JG, Skúlason E et al (2011) Phys Chem Chem Phys 20760–20765:13Google Scholar
  33. 33.
    Wang S, Temel B, Shen J, Jones G, Grabow LC, Studt F, Bligaard T, Abild-Pedersen F, Christensen CH, Nørskov JK (2010) Catal Lett 141:370–373CrossRefGoogle Scholar
  34. 34.
    Campbell CT (1994) Top Catal 1:353–366CrossRefGoogle Scholar
  35. 35.
    Stegelmann C, Andreasen A, Campbell CT (2009) J Am Chem Soc 131:8077–8082CrossRefGoogle Scholar
  36. 36.
    Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter TR, Moses PG, Skúlason E, Bligaard T, Nørskov JK (2007) Phys Rev Lett 99:16104–16105CrossRefGoogle Scholar
  37. 37.
    Nørskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen CJH (2002) J Catal 209:275–278CrossRefGoogle Scholar
  38. 38.
    Rossmeisl J, Logadottir A, Nørskov JK (2005) Chem Phys 319:178–184CrossRefGoogle Scholar
  39. 39.
    Hansen HA, Man IC, Studt F, Abild-Pedersen F, Bligaard T, Rossmeisl J (2010) Phys Chem Chem Phys 12:283–290CrossRefGoogle Scholar
  40. 40.
    Man IC, Su H-Y, Calle-Vallejo F, Hansen HA, Martínez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J (2011) ChemCatChem 3:1159–1165CrossRefGoogle Scholar
  41. 41.
    Kleis J, Greeley J, Romero NA, Morozov VA, Falsig H, Larsen AH, Lu J, Mortensen JJ, Dułak M, Thygesen KS, Nørskov JK, Jacobsen KW (2011) Catal Lett 141:1067–1071CrossRefGoogle Scholar
  42. 42.
    Grabow LC, Hvolbæk B, Nørskov JK (2010) Top Catal 53:298–310CrossRefGoogle Scholar
  43. 43.
    Poon H, Khanra B, King T (1993) Phys Rev B 47:16494–16498Google Scholar
  44. 44.
    Curtarolo S, Morgan D, Ceder G (2005) Comput Coupling Phase Diagr Thermochem 29:163–211Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • L. C. Grabow
    • 1
    • 2
    • 4
  • B. Hvolbæk
    • 1
  • H. Falsig
    • 1
    • 3
  • J. K. Nørskov
    • 1
    • 2
    • 3
  1. 1.Department of Physics, Center for Atomic-scale Materials DesignTechnical University of DenmarkLyngbyDenmark
  2. 2.Department of Chemical Engineering, SUNCAT Center for Interface Science and CatalysisStanford UniversityStanfordUSA
  3. 3.SLAC National Accelerator Laboratory, SUNCAT Center for Interface Science and CatalysisMenlo ParkUSA
  4. 4.Department of Chemical and Biomolecular EngineeringUniversity of HoustonHoustonUSA

Personalised recommendations