Advertisement

Topics in Catalysis

, Volume 55, Issue 5–6, pp 376–390 | Cite as

Electronic Structure Engineering in Heterogeneous Catalysis: Identifying Novel Alloy Catalysts Based on Rapid Screening for Materials with Desired Electronic Properties

  • Hongliang Xin
  • Adam Holewinski
  • Neil Schweitzer
  • Eranda Nikolla
  • Suljo Linic
Original Paper

Abstract

The immense phase space of multimetallic materials spanned by structural and compositional degrees of freedom precludes thorough screening for efficient alloy catalysts, even with combinatorial high-throughput experiments or quantum-chemical calculations. Based on X-ray absorption spectroscopy measurements and density functional theory calculations, we have identified critical electronic structure descriptors that govern local chemical reactivity of different sites in metal alloys. These descriptors were used to develop a model that allows us to predict variations in the adsorption energy of various adsorbates on alloy surfaces based on easily accessible physical characteristics of the constituent elements in alloys, mainly their electronegativity, atomic radius, and the spatial extent of valence orbitals. We show that this model, which is grounded on validated theories of chemisorption on metal surfaces, can be used to rapidly screen through a large phase space of alloy catalysts and identify optimal alloys for targeted catalytic transformations. We underline the potential of the electronic structure engineering, relating alloy geometry to its catalytic performance using simple electronic structure descriptors, in catalysis.

Keywords

Structure–reactivity relationships Alloy Density functional theory X-ray absorption spectroscopy Oxygen reduction reaction Platinum Rapid screening 

Notes

Acknowledgments

We gratefully acknowledge the support of the US Department of Energy DOE-BES, Division of Chemical Sciences (FG-02-05ER15686) and the National Science Foundation (CBET 1132777). S. Linic also acknowledges the DuPont Young Professor grant by DuPont Corporation and the Camille Dreyfus Teacher–Scholar Award from the Camille & Henry Dreyfus Foundation.

References

  1. 1.
    Nikolla E, Holewinski A, Schwank J, Linic S (2006) J Am Chem Soc 128:11354–11355CrossRefGoogle Scholar
  2. 2.
    Linic S, Jankowiak J, Barteau MA (2004) J Catal 224:489–493CrossRefGoogle Scholar
  3. 3.
    Yano H, Kataoka M, Yamashita H, Uchida H, Watanabe M (2007) Langmuir 23:6438–6445CrossRefGoogle Scholar
  4. 4.
    Besenbacher F, Chorkendorff I, Clausen BS, Hammer B, Molenbroek AM, Nørskov JK, Stensgaard I (1998) Science 279:1913–1915CrossRefGoogle Scholar
  5. 5.
    Stamenković VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Marković NM (2007). Science 315:493–497Google Scholar
  6. 6.
    Guo J, Xie C, Lee K, Guo N, Miller JT, Janik MJ, Song C (2011) ACS Catal 1:574–582CrossRefGoogle Scholar
  7. 7.
    Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2004) J Chem Phys 120:10240–10246CrossRefGoogle Scholar
  8. 8.
    Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2004) Phys Rev Lett 93:156801CrossRefGoogle Scholar
  9. 9.
    Zhang J, Vukmirovic MB, Sasaki K, Nilekar AU, Mavrikakis M, Adzic RR (2005) J Am Chem Soc 127:12480–12481CrossRefGoogle Scholar
  10. 10.
    Xin H, Schweitzer N, Nikolla E, Linic S (2010) J Chem Phys 132:111101–111101Google Scholar
  11. 11.
    Hammer B (2006) Top Catal 37:3–16CrossRefGoogle Scholar
  12. 12.
    Hammer B, Nørskov JK (1995) Surf Sci 343:211–220CrossRefGoogle Scholar
  13. 13.
    Hammer B, Morikawa Y, Nørskov JK (1996) Phys Rev Lett 76:2141CrossRefGoogle Scholar
  14. 14.
    Nørskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen CJH (2002) J Catal 209:275–278CrossRefGoogle Scholar
  15. 15.
    Hammer B, Nørskov JK (1995) Nature 376:238–240CrossRefGoogle Scholar
  16. 16.
    Lambert RM, Pacchioni (1997) Chemisorption and reactivity on supported clusters and thin films. Springer, BerlinGoogle Scholar
  17. 17.
    Walter A (1989) Electronic structure and the properties of solids: the physics of the chemical bond. Dover, New YorkGoogle Scholar
  18. 18.
    Schweitzer N, Xin H, Nikolla E, Miller JT, Linic S (2010) Top Catal 53:348–356CrossRefGoogle Scholar
  19. 19.
    Nikolla E, Schwank J, Linic S (2009) J Am Chem Soc 131:2747–2754CrossRefGoogle Scholar
  20. 20.
    Durussel P, Massara R, Feschotte P (1994) J Alloy Compd 215:175–179CrossRefGoogle Scholar
  21. 21.
    Linde JO (1937) Ann Phys 422:151–164CrossRefGoogle Scholar
  22. 22.
    Mansour AN, Cook JW, Sayers DE (1984) J Phys Chem 88:2330–2334CrossRefGoogle Scholar
  23. 23.
    Rehr JJ, Ankudinov AL (2005) Coord Chem Rev 249:131–140CrossRefGoogle Scholar
  24. 24.
    Ankudinov AL, Nesvizhskii AI, Rehr JJ (2001) J Synchrotron Radiat 8:92–95CrossRefGoogle Scholar
  25. 25.
    Muller DA, Singh DJ, Silcox J (1998) Phys Rev B 57:8181CrossRefGoogle Scholar
  26. 26.
    Rez P, Muller DA (2008). Annu Rev Mater Res 38:535–558Google Scholar
  27. 27.
    Keast VJ, Scott AJ, Brydson R, Williams DB, Bruley J (2001) J Microsc 203:135–175CrossRefGoogle Scholar
  28. 28.
    Iwasawa Y (1996) X-ray absorption fine structure for catalysts and surfaces. World Scientific, River EdgeGoogle Scholar
  29. 29.
    Ankudinov AL, Rehr JJ, Low JJ, Bare SR (2001) J Synchrotron Rad 8:578–580CrossRefGoogle Scholar
  30. 30.
    Nesvizhskii AI, Rehr JJ (1999) J Synchrotron Rad 6:315–316CrossRefGoogle Scholar
  31. 31.
    Lei Y, Jelic J, Nitsche LC, Meyer R, Miller J (2011) Top Catal 54:5–7Google Scholar
  32. 32.
    Prado RJ, Flank AM (2005) Physica Scripta 115:165Google Scholar
  33. 33.
    Lie K, Brydson R, Davock H (1999) Phys Rev B 59:5361–5367CrossRefGoogle Scholar
  34. 34.
    Gao S, Pickard CJ, Perlov A, Milman V (2009) J Phys 21:104203Google Scholar
  35. 35.
    Müller JE, Wilkins JW (1984) Phys Rev B 29:4331–4348CrossRefGoogle Scholar
  36. 36.
    İnoğlu N, Kitchin JR (2011) ACS Catal 1:399–407CrossRefGoogle Scholar
  37. 37.
    Xin H, Holewinski A, Linic S (2011) ACS Catal 2:12–16Google Scholar
  38. 38.
    İnoğlu N, Kitchin JR (2010) Mol Simul 36:633CrossRefGoogle Scholar
  39. 39.
    Denton AR, Ashcroft NW (1991) Phys Rev A 43:3161–3164CrossRefGoogle Scholar
  40. 40.
    Xin H, Linic S (2010) J Chem Phys 132:221101–221101Google Scholar
  41. 41.
    Nørskov JK (1989) J Chem Phys 90:7461–7471CrossRefGoogle Scholar
  42. 42.
    Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter TR, Moses PG, Skulason E, Bligaard T, Nørskov JK (2007) Phys Rev Lett 99:016105-4CrossRefGoogle Scholar
  43. 43.
    Wang JX, Marković NM, Adzic RR (2004) J Phys Chem B 108:4127–4133CrossRefGoogle Scholar
  44. 44.
    Marković NM, Schmidt TJ, Stamenković V, Ross PN (2001) Fuel Cells 1:105–116CrossRefGoogle Scholar
  45. 45.
    Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) J Phys Chem B 108:17886–17892CrossRefGoogle Scholar
  46. 46.
    Bondarenko AS, Stephens IEL, Hansen HA, Pérez-Alonso FJ, Tripkovic V, Johansson TP, Rossmeisl J, Nørskov JK, Chorkendorff IB (2011) Langmuir 27:2058–2066CrossRefGoogle Scholar
  47. 47.
    Stephens IEL, Bondarenko AS, Perez-Alonso FJ, Calle-Vallejo F, Bech L, Johansson TP, Jepsen AK, Frydendal R, Knudsen BP, Rossmeisl J, Chorkendorff IB (2011) J Am Chem Soc 133:5485–5491CrossRefGoogle Scholar
  48. 48.
    Zhang J, Vukmirovic MB, Ye X, Mavrikakis M, Adzic RR (2005) Angew Chem Int Ed 44:2132–2135CrossRefGoogle Scholar
  49. 49.
    Ghosh T, Vukmirovic MB, DiSalvo FJ, Adzic RR (2010) J Am Chem Soc 132:906–907CrossRefGoogle Scholar
  50. 50.
    Stamenković V, Mun BS, Mayrhofer KJ, Ross PN, Marković NM, Rossmeisl J, Greeley J, Nørskov JK (2006) Angew Chem Int Ed 45:2897–2901CrossRefGoogle Scholar
  51. 51.
    Gong K, Dong S, Adzic RR (2010) J Am Chem Soc 132:14364–14366CrossRefGoogle Scholar
  52. 52.
    Xing Y, Cai Y, Vukmirovic MB, Zhou W-P, Karan H, Wang JX, Adzic RR (2010) J Phys Chem Lett 1:3238–3242CrossRefGoogle Scholar
  53. 53.
    Mizutani U (2010) Hume-Rothery rules for structurally complex alloy phases, 1st edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  54. 54.
    Vanderbilt D (1990) Phys Rev B 41:7892CrossRefGoogle Scholar
  55. 55.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671CrossRefGoogle Scholar
  56. 56.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Hongliang Xin
    • 1
  • Adam Holewinski
    • 1
  • Neil Schweitzer
    • 2
  • Eranda Nikolla
    • 3
  • Suljo Linic
    • 1
  1. 1.Department of Chemical EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Argonne National LaboratoryArgonneUSA
  3. 3.Department of Chemical EngineeringWayne State UniversityDetroitUSA

Personalised recommendations