Topics in Catalysis

, Volume 55, Issue 3–4, pp 148–161 | Cite as

Bifunctional Materials for the Catalytic Conversion of Cellulose into Soluble Renewable Biorefinery Feedstocks

  • Damian Reyes-Luyanda
  • Josseant Flores-Cruz
  • Pedro J. Morales-Pérez
  • Luis G. Encarnación-Gómez
  • Fengyuan Shi
  • Paul M. Voyles
  • Nelson Cardona-MartínezEmail author
Original Paper


The combination of Brønsted acidity with metallic functionality in a mesoporous catalyst offers a potential pathway for the conversion of cellulose into sugar alcohols that may be used as a sustainable source of renewable biorefinery feedstock. Supported Ru catalysts were prepared by evaporative deposition on various ordered mesoporous silicas (SBA-15) with different functionalities and characterized using multiple experimental techniques. The catalytic performance of the supported Ru catalysts was compared to that of the corresponding supports and of Ru/C. We studied the effects of functional group loading, reaction time and temperature on the activity and products yield of the bifunctional catalysts by monitoring the cellulose conversion and the production of sugars and sugar alcohols in a high-pressure batch reactor. Sorbitol is the main product obtained by the hydrolysis of cellulose to glucose followed by the corresponding reduction. Secondary products include sugars, ethylene glycol and glycerol. The activity of mesoporous silica catalysts increases with an increase in acid loading and the addition of Ru allows control of the selectivity towards sugar alcohols. Ruthenium supported on arenesulfonic acid-functionalized mesoporous silica (Ru/SBA-15S) displays the best catalytic performance. Ru/SBA-15S is more hydrothermally stable than SBA-15, but loses a significant fraction of its surface area, crystallinity, acidity and activity after prolonged exposure to water at 483 K.


Cellulose Hydrolysis Hydrogenation Ruthenium Arenesulfonic acid-functionalized mesoporous silica Hydrothermal stability 



The National Science Foundation supported this work (DMR-0934115 and in part by HRD-0833112). One of the authors (DRL) was supported in part through funding from a PRLSAMP Bridge to the Doctorate Scholarship (HRD-0601843). The authors wish to express their gratitude to the undergraduate students Ronald Carrasquillo-Flores and Carmen P. Márquez-Miranda for their help in obtaining some of the results presented here.


  1. 1.
    The outlook for energy: a view to 2030 (2009) Accessed 20 Jan 2011
  2. 2.
  3. 3.
    Emanuel K, Sundararajan R, Williams J (2008) Bull Am Meteorol Soc 89(3):347CrossRefGoogle Scholar
  4. 4.
    Wyman CE (2003) Biotechnol Prog 19(2):254CrossRefGoogle Scholar
  5. 5.
    Chandrakant P, Bisaria VS (1998) Crit Rev Biotechnol 18(4):295CrossRefGoogle Scholar
  6. 6.
    Breaking the biological barriers to cellulosic ethanol: a joint research agenda, DOE/SC-0095, US Department of Energy Office of Science and Office of Energy Efficiency and Renewable Energy (2006)
  7. 7.
    Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Bioresour Technol 96(6):673CrossRefGoogle Scholar
  8. 8.
    Kunkes EL, Simonetti DA, West RM, Serrano-Ruiz JC, Gartner CA, Dumesic JA (2008) Science 322(5900):417CrossRefGoogle Scholar
  9. 9.
    Huber GW, Cortright RD, Dumesic JA (2004) Angew Chem Int Ed 43(12):1549CrossRefGoogle Scholar
  10. 10.
    Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Science 308(5727):1446CrossRefGoogle Scholar
  11. 11.
    Zhang JH, Zhang JQ, Lin L, Chen TM, Zhang J, Liu SJ, Li ZJ, Ouyang PK (2009) Molecules 14(12):5027CrossRefGoogle Scholar
  12. 12.
    Zhang JH, Zhang BX, Zhang JQ, Lin L, Liu SJ, Ouyang PK (2010) Biotechnol Adv 28(5):613CrossRefGoogle Scholar
  13. 13.
    Levine SE, Fox JM, Blanch HW, Clark DS (2010) Biotechnol Bioeng 107(1):37CrossRefGoogle Scholar
  14. 14.
    Qi G, Wang Y, Estevez L, Duan X, Anako N, Park A-HA, Li W, Jones CW, Giannelis EP (2011) Energy Environ Sci 4(2):444CrossRefGoogle Scholar
  15. 15.
    Adel AM, El-Wahab ZHA, Ibrahim AA, Al-Shemy MT (2010) Bioresour Technol 101(12):4446CrossRefGoogle Scholar
  16. 16.
    Morales G, Athens G, Chmelka BF, van Grieken R, Melero JA (2008) J Catal 254(2):205CrossRefGoogle Scholar
  17. 17.
    Fukuoka A, Dhepe PL (2009) Chem Rec 9(4):224CrossRefGoogle Scholar
  18. 18.
    Rinaldi R, Schuth F (2009) Energy Environ Sci 2(6):610CrossRefGoogle Scholar
  19. 19.
    Rinaldi R, Schuth F (2009) ChemSusChem 2(12):1096CrossRefGoogle Scholar
  20. 20.
    Verendel JJ, Church TL, Andersson PG (2011) Synthesis (11):1649Google Scholar
  21. 21.
    Cabiac A, Guillon E, Chambon F, Pinel C, Rataboul F, Essayem N (2011) Appl Catal A Gen 402(1–2):1CrossRefGoogle Scholar
  22. 22.
    Geboers JA, Van de Vyver S, Ooms R, de Beeck BO, Jacobs PA, Sels BF (2011) Catal Sci Technol 1(5):714CrossRefGoogle Scholar
  23. 23.
    Yang PF, Kobayashi H, Fukuoka A (2011) Chin J Catal 32(5):716CrossRefGoogle Scholar
  24. 24.
    Lai DM, Deng L, Li JA, Liao B, Guo QX, Fu Y (2011) ChemSusChem 4(1):55CrossRefGoogle Scholar
  25. 25.
    Pang JF, Wang AQ, Zheng MY, Zhang T (2010) Chem Commun 46(37):6935CrossRefGoogle Scholar
  26. 26.
    Van de Vyver S, Peng L, Geboers J, Schepers H, de Clippel F, Gommes CJ, Goderis B, Jacobs PA, Sels BF (2010) Green Chem 12(9):1560CrossRefGoogle Scholar
  27. 27.
    Tian J, Wang JH, Zhao S, Jiang CY, Zhang X, Wang XH (2010) Cellulose 17(3):587CrossRefGoogle Scholar
  28. 28.
    Tian JA, Fan CY, Cheng MX, Wang XH (2011) Chem Eng Technol 34(3):482CrossRefGoogle Scholar
  29. 29.
    Bootsma JA, Shanks BH (2007) Appl Catal A Gen 327(1):44CrossRefGoogle Scholar
  30. 30.
    Fukuoka A, Dhepe PL (2006) Angew Chem Int Ed 45(31):5161CrossRefGoogle Scholar
  31. 31.
    Kobayashi H, Ito Y, Komanoya T, Hosaka Y, Dhepe PL, Kasai K, Hara K, Fukuoka A (2011) Green Chem 13(2):326CrossRefGoogle Scholar
  32. 32.
    Kobayashi H, Matsuhashi H, Komanoya T, Hara K, Fukuoka A (2011) Chem Commun 47(8):2366CrossRefGoogle Scholar
  33. 33.
    Kobayashi H, Komanoya T, Hara K, Fukuoka A (2010) ChemSusChem 3(4):440CrossRefGoogle Scholar
  34. 34.
    Luo C, Wang S, Liu HC (2007) Angew Chem Int Ed 46(40):7636CrossRefGoogle Scholar
  35. 35.
    Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Chen JG (2008) Angew Chem Int Ed 47(44):8510CrossRefGoogle Scholar
  36. 36.
    Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Shu Y, Stottlemyer AL, Chen JG (2009) Catal Today 147(2):77CrossRefGoogle Scholar
  37. 37.
    Zheng M-Y, Wang A-Q, Ji N, Pang J-F, Wang X-D, Zhang T (2010) ChemSusChem 3(1):63CrossRefGoogle Scholar
  38. 38.
    Zhang YH, Wang AQ, Zhang T (2010) Chem Commun 46(6):862CrossRefGoogle Scholar
  39. 39.
    Pang J, Wang A, Zheng M, Zhang Y, Huang Y, Chen X, Zhang T (2012) Green Chem 14(3):614CrossRefGoogle Scholar
  40. 40.
    Van de Vyver S, Geboers J, Dusselier M, Schepers H, Vosch T, Zhang LA, Van Tendeloo G, Jacobs PA, Sels BF (2010) ChemSusChem 3(6):698CrossRefGoogle Scholar
  41. 41.
    Palkovits R, Tajvidi K, Procelewska J, Rinaldi R, Ruppert A (2010) Green Chem 12(6):972CrossRefGoogle Scholar
  42. 42.
    Geboers J, Van de Vyver S, Carpentier K, Jacobs P, Sels B (2011) Chem Commun 47(19):5590CrossRefGoogle Scholar
  43. 43.
    Pagán-Torres YJ, Gallo JMR, Wang D, Pham HN, Libera JA, Marshall CL, Elam JW, Datye AK, Dumesic JA (2011) ACS Catal 1(10):1234CrossRefGoogle Scholar
  44. 44.
    Geboers J, Van de Vyver S, Carpentier K, Jacobs P, Sels B (2011) Green Chem 13(8):2167CrossRefGoogle Scholar
  45. 45.
    Palkovits R, Tajvidi K, Ruppert AM, Procelewska J (2011) Chem Commun 47(1):576CrossRefGoogle Scholar
  46. 46.
    Liu M, Deng WP, Zhang QH, Wang YL, Wang Y (2011) Chem Commun 47(34):9717CrossRefGoogle Scholar
  47. 47.
    Ravenelle RM, Diallo FZ, Crittenden JC, Sievers C (2012) ChemCatChem 4:492CrossRefGoogle Scholar
  48. 48.
    Ravenelle RM, Copeland JR, Kim WG, Crittenden JC, Sievers C (2011) ACS Catal 1(5):552CrossRefGoogle Scholar
  49. 49.
    Ravenelle RM, Schussler F, D’Amico A, Danilina N, van Bokhoven JA, Lercher JA, Jones CW, Sievers C (2010) J Phys Chem C 114(46):19582CrossRefGoogle Scholar
  50. 50.
    Melero JA, Stucky GD, van Grieken R, Morales G (2002) J Mater Chem 12(6):1664CrossRefGoogle Scholar
  51. 51.
    Kruk M, Jaroniec M, Sayari A (1999) Chem Mater 11(2):492CrossRefGoogle Scholar
  52. 52.
    Jaroniec M, Solovyov LA (2006) Langmuir 22(16):6757CrossRefGoogle Scholar
  53. 53.
    Kruk M, Jaroniec M, Ko CH, Ryoo R (2000) Chem Mater 12(7):1961CrossRefGoogle Scholar
  54. 54.
    Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279(5350):548CrossRefGoogle Scholar
  55. 55.
    Margolese D, Melero JA, Christiansen SC, Chmelka BF, Stucky GD (2000) Chem Mater 12(8):2448CrossRefGoogle Scholar
  56. 56.
    Zhao D, Sun J, Li Q, Stucky GD (2000) Chem Mater 12(2):275CrossRefGoogle Scholar
  57. 57.
    Bandura AV, Lvov SN (2006) J Phys Chem Ref Data 35(1):15CrossRefGoogle Scholar
  58. 58.
    Cinlar B, Shanks BH (2011) Appl Catal A Gen 396(1–2):76CrossRefGoogle Scholar
  59. 59.
    Rosenholm JM, Linden M (2007) Chem Mater 19(20):5023CrossRefGoogle Scholar
  60. 60.
    Leung K, Nielsen IMB, Criscenti LJ (2009) J Am Chem Soc 131(51):18358CrossRefGoogle Scholar
  61. 61.
    Mahadevan TS, Garofalini SH (2008) J Phys Chem C 112(5):1507CrossRefGoogle Scholar
  62. 62.
    Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA (2003) Appl Catal B 43(1):13CrossRefGoogle Scholar
  63. 63.
    Deng W, Tan X, Fang W, Zhang Q, Wang Y (2009) Catal Lett 133(1):167CrossRefGoogle Scholar
  64. 64.
    Balandin AA, Vasyunina NA, Barysheva GS, Chepigo SV (1957) Bull Acad Sci USSR 6:403CrossRefGoogle Scholar
  65. 65.
    Zhang FQ, Yan Y, Yang HF, Meng Y, Yu CZ, Tu B, Zhao DY (2005) J Phys Chem B 109(18):8723CrossRefGoogle Scholar
  66. 66.
    Du YC, Lan XJ, Liu S, Ji YY, Zhang YL, Zhang WP, Xiao FS (2008) Microporous Mesoporous Mater 112(1–3):225CrossRefGoogle Scholar
  67. 67.
    Li Q, Wu ZX, Tu B, Park SS, Ha CS, Zhao DY (2010) Microporous Mesoporous Mater 135(1–3):95CrossRefGoogle Scholar
  68. 68.
    Li CL, Wang YQ, Guo YL, Liu XH, Guo Y, Zhang ZG, Wang YS, Lu GZ (2007) Chem Mater 19(2):173CrossRefGoogle Scholar
  69. 69.
    Kozlova SA, Kirik SD (2010) Microporous Mesoporous Mater 133(1–3):124CrossRefGoogle Scholar
  70. 70.
    Pan DH, Yuan P, Zhao LZ, Liu NA, Zhou L, Wei GF, Zhang J, Ling YC, Fan Y, Wei BY, Liu HY, Yu CZ, Bao XJ (2009) Chem Mater 21(22):5413CrossRefGoogle Scholar
  71. 71.
    Jiang TL, Tao HX, Ren JW, Liu XH, Wang YQ, Lu GZ (2011) Microporous Mesoporous Mater 142(1):341CrossRefGoogle Scholar
  72. 72.
    Galarneau A, Nader M, Guenneau F, Di Renzo F, Gedeon A (2007) J Phys Chem C 111(23):8268CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Damian Reyes-Luyanda
    • 1
  • Josseant Flores-Cruz
    • 1
  • Pedro J. Morales-Pérez
    • 1
  • Luis G. Encarnación-Gómez
    • 1
  • Fengyuan Shi
    • 2
  • Paul M. Voyles
    • 2
  • Nelson Cardona-Martínez
    • 1
    Email author
  1. 1.Department of Chemical EngineeringUniversity of Puerto Rico-MayagüezPRUSA
  2. 2.Department of Materials Science and EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations