Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effects of Cerium and Aluminum in Cerium-Containing Hierarchical HZSM-5 Catalysts for Biomass Upgrading

  • 849 Accesses

  • 28 Citations

Abstract

We report the synthesis of multifunctional, hierarchical, cerium-containing HZSM-5 catalysts with various aluminum and cerium contents using a dry-gel, dual templating method. The catalysts were characterized by X-ray diffraction, N2 physisorption, scanning electron microscopy, diffuse reflectance UV–Visible spectroscopy, diffuse reflectance Fourier transform infrared spectroscopy, Fourier transform Raman spectroscopy, NH3 temperature programmed desorption and X-ray photoelectron spectroscopy. At low theoretical Si:Al ratios (15 and 20), the formation of amorphous silica–alumina materials was observed. However, at higher theoretical Si:Al ratios (30, 40, and 50), crystalline materials were formed. Furthermore, with Si:Al ratios of 50, cerium incorporation as high as 2.2 wt% was obtained using this procedure. To understand the role of aluminum and cerium in the catalyst, the crystalline materials were studied in the catalytic fast pyrolysis of glucose at 600 °C. The catalysts with cerium incorporated showed an increase in the production of oxygenated chemicals as well as CO, compared with their non-cerium containing analogs.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044

  2. 2.

    Hicks JC (2011) J Phys Chem Lett 2:2280

  3. 3.

    Mohan D, Pittman CU, Steele PH (2006) Energy Fuels 20:848

  4. 4.

    Wright MM, Daugaard DE, Satrio JA, Brown RC (2010) Fuel 89:S11

  5. 5.

    Goyal HB, Seal D, Saxena RC (2008) Renew Sustain Energy Rev 12:504

  6. 6.

    Elliott DC, Beckman D, Bridgwater AV, Diebold JP, Gevert SB, Solantausta Y (1991) Energy Fuels 5:399

  7. 7.

    Peacocke GVC, Russell PA, Jenkins JD, Bridgwater AV (1994) Biomass Bioenergy 7:169

  8. 8.

    Czernik S, Bridgwater AV (2004) Energy Fuels 18:590

  9. 9.

    Aho A, Kumar N, Eränen K, Salmi T, Hupa M, Murzin DY (2008) Fuel 87:2493

  10. 10.

    Pattiya A, Titiloye JO, Bridgwater AV (2008) J Anal Appl Pyrolysis 81:72

  11. 11.

    Corma A, Huber GW, Sauvanaud L, O’Connor P (2007) J Catal 247:307

  12. 12.

    French R, Czernik S (2010) Fuel Process Technol 91:25

  13. 13.

    Olazar M, Aguado R, Bilbao J, Barona A (2000) AIChE J 46:1025

  14. 14.

    Williams PT, Horne PA (1995) J Anal Appl Pyrolysis 31:39

  15. 15.

    Lu Q, Xiong WM, Li WZ, Guo QX, Zhu XF (2009) Bioresour Technol 100:4871

  16. 16.

    Lu Q, Zhang Y, Tang Z, Li W-Z, Zhu X-F (2010) Fuel 89:2096

  17. 17.

    Lu Q, Li WZ, Zhang D, Zhu XF (2009) J Anal Appl Pyrolysis 84:131

  18. 18.

    Lu Q, Tang Z, Zhang Y, Zhu X-F (2010) Ind Eng Chem Res 49:2573

  19. 19.

    Carlson TR, Cheng YT, Jae J, Huber GW (2011) Energy Environ Sci 4:145

  20. 20.

    Carlson TR, Tompsett GA, Conner WC, Huber GW (2009) Top Catal 52:241

  21. 21.

    Chen NY, Degnan TF, Koenig LR (1986) ChemTech 16:506

  22. 22.

    Jae J, Tompsett GA, Foster AJ, Hammond KD, Auerbach SM, Lobo RF, Huber GW (2011) J Catal 279:257

  23. 23.

    Zhang HY, Cheng YT, Vispute TP, Xiao R, Huber GW (2011) Energy Environ Sci 4:2297

  24. 24.

    Park HJ, Heo HS, Jeon JK, Kim J, Ryoo R, Jeong KE, Park YK (2010) Appl Catal B 95:365

  25. 25.

    Neumann GT, Hicks JC (2012) ACS Catal 2:642

  26. 26.

    Zhu XL, Lobban LL, Mallinson RG, Resasco DE (2010) J Catal 271:88

  27. 27.

    Lappas AA, Samolada MC, Iatridis DK, Voutetakis SS, Vasalos IA (2002) Fuel 81:2087

  28. 28.

    Lin YC, Huber GW (2009) Energy Environ Sci 2:68

  29. 29.

    Rinaldi R, Schuth F (2009) Energy Environ Sci 2:610

  30. 30.

    Corma A (2003) J Catal 216:298

  31. 31.

    Zhou J, Hua Z, Liu Z, Wu W, Zhu Y, Shi J (2011) ACS Catal 1:287

  32. 32.

    Chal R, Gerardin C, Bulut M, van Donk S (2011) ChemCatChem 3:67

  33. 33.

    Vivier L, Duprez D (2010) ChemSusChem 3:654

  34. 34.

    Laha SC, Mukherjee P, Sainkar SR, Kumar R (2002) J Catal 207:213

  35. 35.

    Shao YF, Wang LZ, Zhang JL, Anpo M (2005) J Phys Chem B 109:20835

  36. 36.

    Timofeeva MN, Jhung SH, Hwang YK, Kim DK, Panchenko VN, MeIgunov MS, Chesalov YA, Chang JS (2007) Appl Catal A 317:1

  37. 37.

    Dai QG, Wang XY, Chen GP, Zheng Y, Lu GZ (2007) Microporous Mesoporous Mater 100:268

  38. 38.

    Zhao R, Wang Y, Guo Y, Guo Y, Liu X, Zhang Z, Wang Y, Zhan W, Lu G (2006) Green Chem 8:459

  39. 39.

    Bensalem A, Bozonverduraz F, Delamar M, Bugli G (1995) Appl Catal A 121:81

  40. 40.

    Reddy BM, Khan A, Lakshmanan P, Aouine M, Loridant S, Volta JC (2005) J Phys Chem B 109:3355

  41. 41.

    Elbaba IF, Wu C, Williams PT (2011) Int J Hydrogen Energy 36:6628

  42. 42.

    Inaba M, Murata K, Saito M, Takahara I (2006) Energy Fuels 20:432

  43. 43.

    Wu CF, Williams PT (2009) Int J Hydrogen Energy 34:6242

  44. 44.

    Jongpatiwut S, Sackamduang P, Rirksomboon T, Osuwan S, Alvarez WE, Resasco DE (2002) Appl Catal A 230:177

  45. 45.

    Stagg-Williams SM, Noronha FB, Fendley G, Resasco DE (2000) J Catal 194:240

  46. 46.

    Ma L, Praharso, Trimm DL (1999) Rare Earths ‘98 315:187

  47. 47.

    Laosiripojana N, Sangtongkitcharoen W, Assabumrungrat S (2006) Fuel 85:323

  48. 48.

    Voogd P, Scholten JJF, van Bekkum H (1991) Colloids Surf 55:163

  49. 49.

    Sayari A, Crusson E, Kaliaguine S, Brown JR (1991) Langmuir 7:314

  50. 50.

    Wu EL, Lawton SL, Olson DH, Rohrman AC, Kokotailo GT (1979) J Phys Chem 83:2777

  51. 51.

    van Koningsveld H, Jansen JC, van Bekkum H (1990) Zeolites 10:235

  52. 52.

    Strunk J, Vining WC, Bell AT (2011) J Phys Chem C 115:4114

  53. 53.

    Devika S, Palanichamy M, Murugesan V (2011) J Mol Catal A Chem 351:136

  54. 54.

    Yuliati L, Hamajima T, Hattori T, Yoshida H (2005) Chem Commun 14:4824

  55. 55.

    Zhao Q, Xu YH, Li YH, Jiang TS, Li CS, Yin HB (2009) Appl Surf Sci 255:9425

  56. 56.

    Murkute AD, Jackson JE, Miller DJ (2011) J Catal 278:189

  57. 57.

    Yang H, Tao Q (2010) J Am Ceram Soc 93:1056

  58. 58.

    Zhang F, Wang P, Koberstein J, Khalid S, Chan SW (2004) Surf Sci 563:74

  59. 59.

    Hoang TQ, Zhu XL, Lobban LL, Resasco DE, Mallinson RG (2010) Catal Commun 11:977

  60. 60.

    van Donk S, Janssen AH, Bitter JH, de Jong KP (2003) Catal Rev Sci Eng 45:297

  61. 61.

    Park KH, Park HJ, Kim J, Ryoo R, Jeon JK, Park J, Park YK (2010) J Nanosci Nanotechnol 10:355

  62. 62.

    Hurd CD, Goldsby AR, Osborne EN (1932) J Am Chem Soc 54:2532

  63. 63.

    Pradhan AR, Wu JF, Jong SJ, Tsai TC, Liu SB (1997) Appl Catal B 165:489

Download references

Acknowledgments

The authors thank the Center for Environmental Science and Technology at the University of Notre Dame for use of the center’s Bruker FTIR and Perkin Elmer ICP–OES.

Author information

Correspondence to Jason C. Hicks.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Neumann, G.T., Hicks, J.C. Effects of Cerium and Aluminum in Cerium-Containing Hierarchical HZSM-5 Catalysts for Biomass Upgrading. Top Catal 55, 196–208 (2012). https://doi.org/10.1007/s11244-012-9788-0

Download citation

Keywords

  • MFI
  • Hierarchical
  • Biomass
  • Cerium
  • Pyrolysis