Topics in Catalysis

, Volume 55, Issue 3–4, pp 175–184 | Cite as

Palladium Catalysts for Fatty Acid Deoxygenation: Influence of the Support and Fatty Acid Chain Length on Decarboxylation Kinetics

  • Jeffrey P. Ford
  • Jeremy G. Immer
  • H. Henry Lamb
Original Paper


Supported metal catalysts containing 5 wt% Pd on silica, alumina, and activated carbon were evaluated for liquid-phase deoxygenation of stearic (octadecanoic), lauric (dodecanoic), and capric (decanoic) acids under 5 % H2 at 300 °C and 15 atm. On-line quadrupole mass spectrometry (QMS) was used to measure CO + CO2 yield, CO2 selectivity, H2 consumption, and initial decarboxylation rate. Post-reaction analysis of liquid products by gas chromatography was used to determine n-alkane yields. The Pd/C catalyst was highly active and selective for stearic acid (SA) decarboxylation under these conditions. In contrast, SA deoxygenation over Pd/SiO2 occurred primarily via decarbonylation and at a much slower rate. Pd/Al2O3 exhibited high initial SA decarboxylation activity but deactivated under the test conditions. Similar CO2 selectivity patterns among the catalysts were observed for deoxygenation of lauric and capric acids; however, the initial decarboxylation rates tended to be lower for these substrates. The influence of alkyl chain length on deoxygenation kinetics was investigated for a homologous series of C10–C18 fatty acids using the Pd/C catalyst. As fatty acid carbon number decreases, reaction time and H2 consumption increase, and CO2 selectivity and initial decarboxylation rate decrease. The increase in initial decarboxylation rates for longer chain fatty acids is attributed to their greater propensity for adsorption on the activated carbon support.


Fatty acid alkyl chain length Biofuels Palladium Activated carbon Silica Alumina 



This work was supported by the US Department of Energy, Advanced Research Projects Agency-Energy (ARPA-E) through a grant to Arizona State University (DE-AR0000011).


  1. 1.
    Kubičková I, Snäre M, Eranen K, Mäki-Arvela P, Murzin DY (2005) Catal Today 106:197CrossRefGoogle Scholar
  2. 2.
    Snäre M, Kubičková I, Mäki-Arvela P, Eranen K, Murzin DYu (2006) Ind Eng Chem Res 45:5708CrossRefGoogle Scholar
  3. 3.
    Immer JG, Kelly MJ, Lamb HH (2010) Appl Catal A 375:134CrossRefGoogle Scholar
  4. 4.
    Roberts WL, Lamb HH, Stikeleather LF, Turner TL (2010) US Patent 7,816,570Google Scholar
  5. 5.
    Maier WF, Roth W, Thies I, Ragué Schleyer PV (1982) Chem Ber 115:808CrossRefGoogle Scholar
  6. 6.
    Mäki-Arvela P, Kubičková I, Snäre M, Eranen K, Murzin DYu (2007) Energy Fuels 21:30CrossRefGoogle Scholar
  7. 7.
    Snäre M, Kubičková I, Mäki-Arvela P, Chichova D, Eränen K, Murzin DY (2008) Fuel 87:933CrossRefGoogle Scholar
  8. 8.
    Simakova I, Simakova O, Mäki-Arvela P, Simakov A, Estrada M, Murzin DY (2009) Appl Catal A 335:100Google Scholar
  9. 9.
    Lestari S, Mäki-Arvela P, Bernas H, Simakova O, Sjöholm R, Beltramini J, Max Lu GQ, Myllyoja J, Simakova I, Murzin DY (2009) Energy Fuels 23:3842CrossRefGoogle Scholar
  10. 10.
    Immer JG (2010) PhD dissertation, North Carolina State UniversityGoogle Scholar
  11. 11.
    Immer JG, Lamb HH (2010) Energy Fuels 24:5291CrossRefGoogle Scholar
  12. 12.
    Anneken DJ, Both S, Christoph R, Fieg G, Steinberner U, Westfechtel A (2012) Ullmann’s encylopedia of industrial chemistry, Vol. 14. Wiley-VCH Weinheim, Germany, p. 73Google Scholar
  13. 13.
    Kelly MJ, Kim J-H, Roberts GW, Lamb HH (2008) Top Catal 49:178CrossRefGoogle Scholar
  14. 14.
    Adamson AW (1990) Physical chemistry of surfaces, 5th edn. Wiley, New YorkGoogle Scholar
  15. 15.
    Bansal RC, Goyal M (2005) Activated carbon adsorption. CRC, Boca RatonCrossRefGoogle Scholar
  16. 16.
    Kipling JJ, Wright EHM (1962) J Chem Soc 855Google Scholar
  17. 17.
    Kipling JJ, Wright EHM (1963) J Chem Soc 3382Google Scholar
  18. 18.
    Korolev VV, Blinov AV, Ramazanova AG (2004) Colloid J 66:705CrossRefGoogle Scholar
  19. 19.
    Marmier N (2002) In: Hubbard AT (ed) Encyclopedia of surface and colloid science: inv–pol. Marcel Dekker, New YorkGoogle Scholar
  20. 20.
    Kipling JJ, Wright EHM (1964) J Chem Soc 3535Google Scholar
  21. 21.
    Lestari S, Maki-Arvela P, Simakova I, Beltramini J, Lu GQM, Murzin DY (2009) Catal Lett 130:48CrossRefGoogle Scholar
  22. 22.
    Simakova I, Simakova O, Maki-Arvela P, Murzin DY (2010) Catal Today 150:28CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jeffrey P. Ford
    • 1
  • Jeremy G. Immer
    • 1
  • H. Henry Lamb
    • 1
  1. 1.Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations