Advertisement

Topics in Catalysis

, Volume 55, Issue 1–2, pp 70–77 | Cite as

Enhanced High Temperature Performance of MgAl2O4-Supported Pt–BaO Lean NOx Trap Catalysts

  • Ja Hun Kwak
  • Do Heui Kim
  • János Szanyi
  • Sung June Cho
  • Charles H. F. Peden
Original Paper

Abstract

The structural and chemical characteristics of Pt/BaO lean NOx trap (LNT) catalysts supported on γ-Al2O3 and MgAl2O4 are compared in this study. The Pt–BaO/MgAl2O4 sample shows relatively low NOx uptake at temperatures below 300 °C, and the temperature of maximum NOx uptake (Tmax) is shifted to 350 °C in comparison to that of Pt–BaO/Al2O3 (Tmax ~ 250 °C). More importantly, the NOx uptake over the MgAl2O4-supported catalyst at 350 °C is twice that of the alumina-based one. The shift toward the higher temperature NOx uptake is explained by the larger interfacial area between Pt and BaO, due to smaller Pt clusters as evidenced by TEM and Pt L3 EXAFS. In situ TR-XRD results demonstrate that the formation of a BaAl2O4 phase in the BaO/MgAl2O4 LNT catalyst occurs at a temperature about 100 °C higher than on BaO/Al2O3, which may also represent a beneficial attribute of the BaO/MgAl2O4 LNT with respect to catalyst stability.

Keywords

Magnesium aluminate LNT Pt cluster Barium oxide NOx 

Notes

Acknowledgments

Financial support was provided by the U.S. Department of Energy (DOE), Office of Freedom Car and Vehicle Technologies. The authors thank Dr. Chongmin Wang for obtaining the TEM images. The work was performed in the Environmental Molecular Sciences Laboratory (EMSL) at the Pacific Northwest National Laboratory (PNNL). The EMSL is a national scientific user facility and supported by the U.S. DOE’s Office of Biological and Environmental Research. PNNL is a multi-program national laboratory operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830.

References

  1. 1.
    Roy S, Baiker A (2009) Chem Rev 109:4054–4091CrossRefGoogle Scholar
  2. 2.
    Liu ZM, Woo SI (2006) Catal Rev Sci Eng 48:43–89CrossRefGoogle Scholar
  3. 3.
    Szanyi J, Kwak JH, Kim DH, Burton SD, Peden CHF (2005) J Phys Chem B 109:27–29CrossRefGoogle Scholar
  4. 4.
    Nova I, Lietti L, Castoldi L, Tronconi E, Forzatti P (2006) J Catal 239:244–254CrossRefGoogle Scholar
  5. 5.
    Cant NW, Liu IOY, Patterson MJ (2006) J Catal 243:309–317CrossRefGoogle Scholar
  6. 6.
    Kim DH, Chin YH, Muntean GG, Yezeretz A, Currier NW, Epling WS, Chen HY, Hess H, Peden CHF (2006) Ind Eng Chem Res 45:8815–8821CrossRefGoogle Scholar
  7. 7.
    Smeltz AD, Delgass WN, Ribeiro FH (2010) Langmuir 26:16578–16588CrossRefGoogle Scholar
  8. 8.
    Olsson L, Fridell E (2002) J Catal 210:340–353CrossRefGoogle Scholar
  9. 9.
    Kwak JH, Kim DH, Szailer T, Peden CHF, Szanyi J (2006) Catal Lett 111:119–126CrossRefGoogle Scholar
  10. 10.
    Xu J, Harold MP, Balakotaiah V (2011) Appl Catal B Environ 104:305–315CrossRefGoogle Scholar
  11. 11.
    Trifiro F, Vaccari A, Clause O (1994) Catal Today 21:185–195CrossRefGoogle Scholar
  12. 12.
    Diez VK, Apesteguia CR, Di Cosimo JI (2003) J Catal 215:220–233CrossRefGoogle Scholar
  13. 13.
    Abello S, Medina F, Tichit D, Perez-Ramirez J, Sueiras JE, Salagre P, Cesteros Y (2007) Appl Catal B Environ 70:577–584CrossRefGoogle Scholar
  14. 14.
    Fornasari G, Glockler R, Livi M, Vaccari A (2005) Appl Clay Sci 29:258–266CrossRefGoogle Scholar
  15. 15.
    Roy S, van Vegten N, Baiker A (2010) J Catal 271:125–131CrossRefGoogle Scholar
  16. 16.
    Takahashi N, Matsunaga S, Tanaka T, Sobukawa H, Shinjoh H (2007) Appl Catal B Environ 77:73–78CrossRefGoogle Scholar
  17. 17.
    Kim DH, Kwak JH, Szanyi J, Burton SD, Peden CHF (2007) Appl Catal B Environ 72:233–239CrossRefGoogle Scholar
  18. 18.
    Niwa M, Katada N, Okumura K (2010) Springer Ser Mater Sci 141:121–122Google Scholar
  19. 19.
    Eberhardt M, Riedel R, Gobel U, Theis J, Lox ES (2004) Top Catal 30–31:135–142CrossRefGoogle Scholar
  20. 20.
    Elbouazzaoui S, Courtois X, Marecot P, Duprez D (2004) Top Catal 30–31:493–496CrossRefGoogle Scholar
  21. 21.
    Olsson L, Persson H, Fridell E, Skoglundh M, Andersson B (2001) J Phys Chem B 105:6895–6906CrossRefGoogle Scholar
  22. 22.
    Clayton RD, Harold MP, Balakotaiah V, Wan CZ (2009) Appl Catal B Environ 90:662–676CrossRefGoogle Scholar
  23. 23.
    Cumaranatunge L, Mulla SS, Yezerets A, Currier NW, Delgass WN, Ribeiro FH (2007) J Catal 246:29–34CrossRefGoogle Scholar
  24. 24.
    Mulla SS, Chaugule SS, Yezerets A, Currier NW, Delgass WN, Ribeiro FH (2008) Catal Today 136:136–145CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ja Hun Kwak
    • 1
  • Do Heui Kim
    • 1
    • 2
  • János Szanyi
    • 1
  • Sung June Cho
    • 3
  • Charles H. F. Peden
    • 1
  1. 1.Institute for Integrated CatalysisPacific Northwest National LaboratoryRichland USA
  2. 2.School of Chemical and Biological EngineeringInstitute of Chemical Process, Seoul National UniversitySeoulRepublic of Korea
  3. 3.Department of Applied Chemical Engineering, Center for Functional Nano Fine Chemicals (BK21 Program)Chonnam National UniversityGwangjuRepublic of Korea

Personalised recommendations