Topics in Catalysis

, Volume 55, Issue 1–2, pp 3–12 | Cite as

Reactions of Propylene Oxide on Supported Silver Catalysts: Insights into Pathways Limiting Epoxidation Selectivity

  • Apoorva Kulkarni
  • Marco Bedolla-Pantoja
  • Suyash Singh
  • Raul F. Lobo
  • Manos Mavrikakis
  • Mark A. Barteau
Original Paper


The reactions of propylene oxide (PO) on silver catalysts were studied to understand the network of parallel and sequential reactions that may limit the selectivity of propylene epoxidation by these catalysts. The products of the anaerobic reaction of PO on Ag/α-Al2O3 were propanal, acetone and allyl alcohol for PO conversions below 2–3%. As the conversion of PO was increased either by increasing the temperature or the contact time, acrolein was formed at the expense of propanal, indicating that acrolein is a secondary reaction product in PO decomposition. With addition of oxygen to the feedstream the conversion of PO increased moderately. In contrast to the experiments in absence of oxygen, CO2 was a significant product while the selectivity to propanal decreased as soon as oxygen was introduced in the system. Allyl alcohol disappeared completely from the product stream in the presence of oxygen, reacting to form acrolein and CO2. The product distribution may be explained by a network of reactions involving two types of oxametallacycles formed by ring opening of PO: one with the oxygen bonded to C1 (OMC1, linear) and the other with oxygen bonded to C2 (OMC2, branched). OMC1 reacts to form PO, propanal, and allyl alcohol. OMC2 can give rise to acetone and PO. (DFT) calculations have verified accessibility to the two oxametallacycle structures from propylene and PO, and have provided energy barriers for each of the steps involved in PO isomerization. This work illustrates the complex manifold of sequential reactions that contribute to the difficulty of achieving high selectivity in direct propylene epoxidation with silver catalysts.


Propylene epoxidation Reaction mechanism Silver catalyst Propylene oxide isomerization Oxametallacycle 



We gratefully acknowledge the financial support of the US Department of Energy through Grant DE-FG02-03ER15468. Computational work at UW benefited from access to supercomputing facilities at: EMSL-PNL, sponsored by DOE-BER, and NERSC, CNM-ANL, and CNMS-ORNL all three sponsored by DOE, Office of Science. We congratulate Professor Harold H. Kung for winning the Gabor A. Somorjai Award for Creative Research in Catalysis.

Supplementary material

11244_2012_9773_MOESM1_ESM.docx (860 kb)
Supplementary material 1 (DOCX 860 kb)


  1. 1.
    SRI Consulting (2011) World Petrochemicals ReportGoogle Scholar
  2. 2.
    Weissermel K, Arpe H-J (1993) Industrial organic chemistry, 2nd edn. VCH, WeinheimGoogle Scholar
  3. 3.
    Sheldon RA (1980) J Mol Catal 7:107CrossRefGoogle Scholar
  4. 4.
    Zemichael FW, Palermo A, Tikhov MS, Lambert RM (2002) Catal Lett 80:93CrossRefGoogle Scholar
  5. 5.
    Cooker B, Gaffney AM, Onimus WH, Jewson JD (1998) US Patent 5,780,657, assigned to Arco Chemical TechnologyGoogle Scholar
  6. 6.
    Gaffney AM, Cooker B, Onimus WH, Jewson JD (1999) US Patent 5,965,480, assigned to Arco Chemical TechnologyGoogle Scholar
  7. 7.
    Barteau MA, Madix RJ (1983) J Am Chem Soc 105:344CrossRefGoogle Scholar
  8. 8.
    Cooker B, Gaffney AM, Jewson JD, Kahn AP, Pitchai R (1998) US Patent 5,770,746, assigned to Arco Chemical TechnologyGoogle Scholar
  9. 9.
    Monnier JR, Peters KT, Hartley GW (2004) J Catal 225:374–380CrossRefGoogle Scholar
  10. 10.
    Linic S, Barteau MA (2008) Chapter 14.11.6. In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) The Handbook of Heterogeneous Catalysis, vol 7, 2nd edn. Wiley-VCH, pp 3448–3464Google Scholar
  11. 11.
    Linic S, Barteau MA (2003) J Am Chem Soc 125:4034CrossRefGoogle Scholar
  12. 12.
    Linic S, Barteau MA (2004) J Am Chem Soc 126:8086CrossRefGoogle Scholar
  13. 13.
    Medlin JW, Barteau MA, Vohs JM (2000) J Mol Catal A 163:129CrossRefGoogle Scholar
  14. 14.
    Monnier JR (1997) Stud Surf Sci Catal 110:135CrossRefGoogle Scholar
  15. 15.
    Medlin JW, Monnier JR, Barteau MA (2001) J Catal 204:71–76CrossRefGoogle Scholar
  16. 16.
    Piao H, Enever MCN, Adib K, Hrbek J, Barteau MA (2004) Surf Sci 571:139CrossRefGoogle Scholar
  17. 17.
    Medlin JW, Mavrikakis M, Barteau MA (1999) J Phys Chem B 103:11169–11175CrossRefGoogle Scholar
  18. 18.
    Lei Y, Mehmood F, Lee S, Greeley J, Lee B, Seifert S, Winans RE, Elam JW, Meyer RJ, Redfern PC, Teschner D, Schlogl R, Pellin MJ, Curtiss LA, Vajda S (2010) Science 328:224–228CrossRefGoogle Scholar
  19. 19.
    Manara G, Parravano G (1974) J Catal 32:72–79CrossRefGoogle Scholar
  20. 20.
    Linic S, Jankowiak J, Barteau MA (2004) J Catal 224:489–493CrossRefGoogle Scholar
  21. 21.
    Dellamorte JC, Lauterbach J, Barteau MA (2010) Top Catal 53:13–18CrossRefGoogle Scholar
  22. 22.
    Dellamorte JC, Lauterbach J, Barteau MA (2011) Appl Catal A: Gen 391:281–288CrossRefGoogle Scholar
  23. 23.
    Dellamorte JC, Barteau MA, Lauterbach J (2009) Surf Sci 603:1770CrossRefGoogle Scholar
  24. 24.
    Kresse G, Furthmuller J (1996) Comput Mater Sci 6:15–50CrossRefGoogle Scholar
  25. 25.
    Kresse G, Furthmuller J (1996) Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  26. 26.
    Neugebauer J, Scheffler M (1992) Phys Rev B 46:16067–16080CrossRefGoogle Scholar
  27. 27.
    Bengtsson L (1999) Phys Rev B 59:12301–12304CrossRefGoogle Scholar
  28. 28.
    Ashcroft NW, Mermin ND (1976) Solid State Physics. Holt, Rinehart and Winston, New YorkGoogle Scholar
  29. 29.
    Blochl PE (1994) Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  30. 30.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  31. 31.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192CrossRefGoogle Scholar
  32. 32.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687CrossRefGoogle Scholar
  33. 33.
    White JA, Bird DM (1994) Phys Rev B 50:4954–4957CrossRefGoogle Scholar
  34. 34.
    Henkelman G, Uberuaga BP, Jonsson H (2000) J Chem Phys 113:9901–9904CrossRefGoogle Scholar
  35. 35.
    Greeley J, Mavrikakis M (2003) Surf Sci 540:215–229CrossRefGoogle Scholar
  36. 36.
    Torres D, Lopez N, Illas F, Lambert RM (2007) Angew Chem Int Ed 46:2055–2058CrossRefGoogle Scholar
  37. 37.
    Yao W, Guo Y, Liu X, Guo Y, Wang Y, Wang Y, Zhang Z, Lu G (2007) Catal Lett 119:185–190CrossRefGoogle Scholar
  38. 38.
    Lu J, Bravo-Suárez JJ, Takahashi A, Haruta M, Oyama ST (2005) J Catal 232:85–95CrossRefGoogle Scholar
  39. 39.
    Luo M, Lu J, Li C (2003) Catal Lett 86:43–49CrossRefGoogle Scholar
  40. 40.
    Bettahar MM, Costentin G, Savary L, Lavalley JC (1996) Appl Catal A: Gen 145:1–48CrossRefGoogle Scholar
  41. 41.
    Takahashi A, Hamakawa N, Nakamura I, Fujitani T (2005) Appl Catal A: Gen 294:34–39CrossRefGoogle Scholar
  42. 42.
  43. 43.
    Yaws CL (1999) Chemical properties handbook. McGraw HillGoogle Scholar
  44. 44.
    Claus P (1998) Top Catal 5:51CrossRefGoogle Scholar
  45. 45.
    Brandt K, Chiu ME, Watson DJ, Tikhov MS, Lambert RM (2009) J Am Chem Soc 131:17286CrossRefGoogle Scholar
  46. 46.
    Liu X, Madix RJ, Friend CM (2008) Chem Soc Rev 37:2243CrossRefGoogle Scholar
  47. 47.
    Solomon JL, Madix RJ (1987) J Phys Chem 91:6241–6244CrossRefGoogle Scholar
  48. 48.
    Lukaski A, Barteau M (2009) Catal Lett 128:9–17CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Apoorva Kulkarni
    • 1
  • Marco Bedolla-Pantoja
    • 1
    • 2
  • Suyash Singh
    • 2
  • Raul F. Lobo
    • 1
  • Manos Mavrikakis
    • 2
  • Mark A. Barteau
    • 1
  1. 1.Center for Catalytic Science and Technology, Department of Chemical EngineeringUniversity of DelawareNewarkUSA
  2. 2.Department of Chemical and Biological EngineeringUniversity of WisconsinMadisonUSA

Personalised recommendations