Topics in Catalysis

, Volume 54, Issue 19–20, pp 1429–1444 | Cite as

Chirality in Amino Acid Overlayers on Cu Surfaces

  • Marian L. Clegg
  • Leonardo Morales de la Garza
  • Sofia Karakatsani
  • David A. King
  • Stephen M. Driver
Original paper

Abstract

Chirality at surfaces has become a strong focus within the surface science community. A particular motivation is the prospect of using heterogeneous catalysis over chiral solid surfaces for asymmetric synthesis, a prospect which has clear relevance to the pharmaceutical industry. Small amino acids adsorbed on Cu surfaces have emerged as important model systems for studying the interaction of chiral molecules with metal surfaces. In this article, we review the current state of knowledge of these systems, and present the results of new experimental studies of alanine overlayers on Cu{311} and {531} surfaces. Our work on Cu{311} helps us to understand the interplay between different manifestations of chirality, especially “footprint chirality”, in the overlayers. Cu{531} is an intrinsically chiral surface orientation; our data reveal strongly enantiospecific alanine-induced restructuring of this surface. This points the way towards a promising route for obtaining strongly enantiospecific interactions with chiral adsorbates.

Keywords

Chiral Heterogeneous catalysis Enantioselectivity Surfaces Scanning tunnelling microscopy (STM) Low-energy electron diffraction (LEED) Amino acids Alanine Glycine Copper Self-organization Restructuring 

References

  1. 1.
    Barlow SM, Raval R (2003) Surf Sci Rep 50:201CrossRefGoogle Scholar
  2. 2.
    Hazen RM, Sholl D (2003) Nat Mater 2:367CrossRefGoogle Scholar
  3. 3.
    Raval R (2009) Chem Soc Rev 38:707CrossRefGoogle Scholar
  4. 4.
    Sholl DS, Gellman AJ (2009) AIChE J 55:2484CrossRefGoogle Scholar
  5. 5.
    Gellman AJ (2010) ACS Nano 4:5CrossRefGoogle Scholar
  6. 6.
    Heitbaum M, Glorius F, Escher I (2006) Angew Chem Int Ed 45:4732CrossRefGoogle Scholar
  7. 7.
    Mallat T, Orglmeister E, Baiker A (2007) Chem Rev 107:4863CrossRefGoogle Scholar
  8. 8.
    Attard G, Ahmadi A, Feliu J, Rodes A, Herrero E, Blais S, Jerkiewicz G (1999) J Phys Chem B 103:1381CrossRefGoogle Scholar
  9. 9.
    Ahmadi A, Attard G, Feliu J, Rodes A (1999) Langmuir 15:2420CrossRefGoogle Scholar
  10. 10.
    Attard GA (2001) J Phys Chem B 105:3158CrossRefGoogle Scholar
  11. 11.
    Horvath JD, Gellman AJ (2001) J Am Chem Soc 123:7953CrossRefGoogle Scholar
  12. 12.
    Horvath JD, Gellman AJ (2002) J Am Chem Soc 124:2384CrossRefGoogle Scholar
  13. 13.
    Horvath JD, Koritnik A, Kamakoti P, Sholl DS, Gellman AJ (2004) J Am Chem Soc 126:14988CrossRefGoogle Scholar
  14. 14.
    Rampulla DM, Francis AJ, Knight KS, Gellman AJ (2006) J Phys Chem B 110:10411CrossRefGoogle Scholar
  15. 15.
    Huang Y, Gellman AJ (2008) Catal Lett 125:177CrossRefGoogle Scholar
  16. 16.
    Woodruff DP, Delchar TA (1994) Modern techniques of surface science, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  17. 17.
    Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory, 2nd edn. Wiley, HobokenCrossRefGoogle Scholar
  18. 18.
    Sholl DS, Steckel JA (2009) Density functional theory: a practical introduction. Wiley, HobokenGoogle Scholar
  19. 19.
    Barlow SM, Kitching KJ, Haq S, Richardson NV (1998) Surf Sci 401:322CrossRefGoogle Scholar
  20. 20.
    Williams J, Haq S, Raval R (1996) Surf Sci 368:303CrossRefGoogle Scholar
  21. 21.
    Booth NA, Woodruff DP, Schaff O, Gießel T, Lindsay R, Baumgärtel P, Bradshaw AM (1998) Surf Sci 397:258CrossRefGoogle Scholar
  22. 22.
    Hasselström J, Karis O, Weinelt M, Wassdahl N, Nilsson A, Nyberg M, Pettersson LGM, Samant MG, Stöhr J (1998) Surf Sci 407:221CrossRefGoogle Scholar
  23. 23.
    Nyberg M, Hasselström J, Karis O, Wassdahl N, Weinelt M, Nilsson A, Pettersson LGM (2000) J Chem Phys 112:5420CrossRefGoogle Scholar
  24. 24.
    Kang J-H, Toomes RL, Polcik M, Kittel M, Hoeft J-T, Efstathiou V, Woodruff DP, Bradshaw AM (2003) J Chem Phys 118:6059CrossRefGoogle Scholar
  25. 25.
    Nyberg M, Odelius M, Nilsson A, Pettersson LGM (2003) J Chem Phys 119:12577CrossRefGoogle Scholar
  26. 26.
    Rankin RB, Sholl DS (2004) Surf Sci 548:301CrossRefGoogle Scholar
  27. 27.
    Rankin RB, Sholl DS (2005) J Phys Chem B 109:16764CrossRefGoogle Scholar
  28. 28.
    Chen Q, Frankel DJ, Richardson NV (2002) Surf Sci 497:37CrossRefGoogle Scholar
  29. 29.
    Toomes RL, Kang J-H, Woodruff DP, Polcik M, Kittel M, Hoeft J-T (2003) Surf Sci 522:L9CrossRefGoogle Scholar
  30. 30.
    Jones G, Jenkins SJ, King DA (2006) Surf Sci 600:L224CrossRefGoogle Scholar
  31. 31.
    Holland BW, Woodruff DP (1973) Surf Sci 36:488CrossRefGoogle Scholar
  32. 32.
    Barlow SM, Louafi S, Le Roux D, Williams J, Muryn C, Haq S, Raval R (2004) Langmuir 20:7171CrossRefGoogle Scholar
  33. 33.
    Barlow SM, Louafi S, Le Roux D, Williams J, Muryn C, Haq S, Raval R (2005) Surf Sci 590:243CrossRefGoogle Scholar
  34. 34.
    Rankin RB, Sholl DS (2005) Surf Sci 574:L1CrossRefGoogle Scholar
  35. 35.
    Sayago DI, Polcik M, Nisbet G, Lamont CLA, Woodruff DP (2005) Surf Sci 590:76CrossRefGoogle Scholar
  36. 36.
    Jones G, Jones LB, Thibault-Starzyk F, Seddon EA, Raval R, Jenkins SJ, Held G (2006) Surf Sci 600:1924CrossRefGoogle Scholar
  37. 37.
    Haq S, Massey A, Moslemzadeh N, Robin A, Barlow SM, Raval R (2007) Langmuir 23:10694CrossRefGoogle Scholar
  38. 38.
    Mateo Marti E, Barlow SM, Haq S, Raval R (2002) Surf Sci 501:191CrossRefGoogle Scholar
  39. 39.
    Forster M, Dyer MS, Persson M, Raval R (2009) J Am Chem Soc 131:10173CrossRefGoogle Scholar
  40. 40.
    Forster M, Dyer MS, Persson M, Raval R (2010) Angew Chem Int Ed 49:2344Google Scholar
  41. 41.
    Zhao X, Wang H, Zhao RG, Yang WS (2001) Mater Sci Eng C 16:41CrossRefGoogle Scholar
  42. 42.
    Zhao X, Gai Z, Zhao RG, Yang WS, Sakurai T (1999) Surf Sci 424:L347CrossRefGoogle Scholar
  43. 43.
    Zhao X, Zhao RG, Yang WS (1999) Surf Sci 442:L995CrossRefGoogle Scholar
  44. 44.
    Efstathiou V, Woodruff DP (2003) Surf Sci 531:304CrossRefGoogle Scholar
  45. 45.
    Mae K, Morikawa Y (2004) Surf Sci 553:L63CrossRefGoogle Scholar
  46. 46.
    Egawa C, Iwai H, Kabutoya M, Oki S (2003) Surf Sci 532–535:233CrossRefGoogle Scholar
  47. 47.
    Iwai H, Tobisawa M, Emori A, Egawa C (2005) Surf Sci 574:214CrossRefGoogle Scholar
  48. 48.
    Iwai H, Egawa C (2010) Langmuir 26:2294CrossRefGoogle Scholar
  49. 49.
    Rankin RB, Sholl DS (2006) J Chem Phys 124:074703CrossRefGoogle Scholar
  50. 50.
    Rankin RB, Sholl DS (2006) Langmuir 22:8096CrossRefGoogle Scholar
  51. 51.
    Jenkins SJ, Pratt SJ (2007) Surf Sci Rep 62:373CrossRefGoogle Scholar
  52. 52.
    McFadden CF, Cremer PS, Gellman AJ (1996) Langmuir 12:2483CrossRefGoogle Scholar
  53. 53.
    Sholl DS (1998) Langmuir 14:862CrossRefGoogle Scholar
  54. 54.
    Sholl DS, Asthagiri A, Power TD (2001) J Phys Chem B 105:4771CrossRefGoogle Scholar
  55. 55.
    Power TD, Asthagiri A, Sholl DS (2002) Langmuir 18:3737CrossRefGoogle Scholar
  56. 56.
    Asthagiri A, Feibelman PJ, Sholl DS (2002) Top Catal 19:193CrossRefGoogle Scholar
  57. 57.
    Baber AE, Gellman AJ, Sholl DS, Sykes ECH (2008) J Phys Chem C 112:11086CrossRefGoogle Scholar
  58. 58.
    Eralp T, Shavorskiy A, Zheleva ZV, Dhanak VR, Held G (2010) Langmuir 26:10918CrossRefGoogle Scholar
  59. 59.
    Gladys MJ, Stevens AV, Scott NR, Jones G, Batchelor D, Held G (2007) J Phys Chem C 111:8331CrossRefGoogle Scholar
  60. 60.
    Thomsen L, Wharmby MT, Riley DP, Held G, Gladys MJ (2009) Surf Sci 603:1253CrossRefGoogle Scholar
  61. 61.
    Titmuss S (1999) A new approach to surface structure determination by low energy diffraction. PhD thesis. University of Cambridge, CambridgeGoogle Scholar
  62. 62.
    Driver SM, King DA (2007) Surf Sci 601:510CrossRefGoogle Scholar
  63. 63.
    Kose R, King DA (1999) Chem Phys Lett 1–2:1CrossRefGoogle Scholar
  64. 64.
    Clegg ML, Driver SM, Blanco-Rey M, King DA (2010) J Phys Chem C 114:4114CrossRefGoogle Scholar
  65. 65.
    Puisto SR, Held G, King DA (2005) Phys Rev Lett 95:036102CrossRefGoogle Scholar
  66. 66.
    Puisto SR, Held G, Ranea V, Jenkins SJ, Mola EE, King DA (2005) J Phys Chem B 109:22456CrossRefGoogle Scholar
  67. 67.
    Houston JE, Park RL (1971) Surf Sci 26:269CrossRefGoogle Scholar
  68. 68.
    Laramore GE, Houston JE, Park RL (1973) J Vac Sci Technol 10:196CrossRefGoogle Scholar
  69. 69.
    Cowley JM, Shuman H (1973) Surf Sci 28:53CrossRefGoogle Scholar
  70. 70.
    Zhao X, Perry SS (2004) J Mol Catal A 216:257CrossRefGoogle Scholar
  71. 71.
    Giesen M, Dieluweit S (2004) J Mol Catal A 216:263CrossRefGoogle Scholar
  72. 72.
    Green MM, Reidy MP, Johnson RJ, Darling G, O’Leary DJ, Wilson G (1989) J Am Chem Soc 111:6452CrossRefGoogle Scholar
  73. 73.
    Wintterlin J, Schuster R, Coulman DJ, Ertl G, Behm RJ (1991) J Vac Sci Technol B 9:902CrossRefGoogle Scholar
  74. 74.
    Voet D, Voet JG (2004) Biochemisty, 3rd edn. Wiley, HobokenGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Marian L. Clegg
    • 1
  • Leonardo Morales de la Garza
    • 2
  • Sofia Karakatsani
    • 1
  • David A. King
    • 1
  • Stephen M. Driver
    • 1
  1. 1.Department of ChemistryUniversity of CambridgeCambridgeUK
  2. 2.Centro de Nanociencias y NanotecnologiaUniversidad Nacional Autonoma de MexicoEnsenadaMexico

Personalised recommendations