Advertisement

Topics in Catalysis

, 54:1266 | Cite as

Li-doped MgO From Different Preparative Routes for the Oxidative Coupling of Methane

  • S. Arndt
  • U. Simon
  • S. Heitz
  • A. Berthold
  • B. Beck
  • O. Görke
  • J. -D. Epping
  • T. Otremba
  • Y. Aksu
  • E. Irran
  • G. Laugel
  • M. Driess
  • H. Schubert
  • R. Schomäcker
Original Paper

Abstract

Li-doped MgO was prepared on different preparative routes and with different loadings. The catalytic activity was found to decay for all catalysts for 40 h time on stream. A detailed structural analysis of 0.5 wt% Li-doped MgO showed heavy losses of Li, reduced surface area and grain growth. A correlation between these factors and the deactivation could not be found. The reaction temperature and the flow rate were found to be the main deactivation parameters.

Keywords

Li/MgO [Li+OOxidative coupling of methane OCM Wet impregnation Precipitation Single source precursors Mixed milling Deactivation 

Abbreviations

AAS

Atomic absorption spectroscopy

BET

Brunauer Emmett Teller

ENDOR

Electron nuclear double resonance spectroscopy

EPR

Electron paramagnetic resonance

ESR

Electron spin resonance

eV

Electron volt

FID

Flame ionisation detector

FWHH

Full width at half height

MAS

Magic angle spinning

NMR

Nuclear magnetic resonance spectroscopy

OCM

Oxidative coupling of methane

PFTR

Plug flow tubular reactor

S

Selectivity

SEM

Scanning electron microscopy

TCD

Thermal conductivity detector

TEM

Transmission electron microscopy

TPPM

Two pulse phase modulation

X

Conversion

XRD

X-ray diffraction

Notes

Acknowledgements

We would like to thank the Deutsche Forschungsgemeinschaft for funding the Excellence Cluster “Unicat” (Unifying Concepts in Catalysis) and the IMPRS (International Max Planck Research School) of the Fritz Haber Institute of the Max Planck Society for financial support. We are also obliged to Mr. Axel Schiele and the workshop for their support with the equipment. We thank Dr. Traugott Scheytt and his team for the performance of the AAS analysis and Dr. Nakhal for the H2S pretreatment of the Li/MgO catalyst. We are indepted to Dr. Thomas Risse and Dr. Raimund Horn for their valuable advice. We also thank our apprentices Mrs. Anna Paliszewska and Mr. Domenic Jelinski, for their support with the sample preparation and analysation. We would like to thank Prof. Dr. Arne Thomas for the permission to use his multi-sampling XRD machine and Dr. Kamalakannan Kailasam for the XRD experiments. We thank the Helmholtz Center, Berlin for the permission to use their electron microscope. We thank also the ZELMI (Zentrales Laboratorium für Elektronenmikroskopie, TU, Berlin) for TEM analyses.

References

  1. 1.
    Bp Statistical Review of World Energy (2008). https://www.bp.com/statisticalreview. Accessed 24 June 2008
  2. 2.
    Ito T, Lunsford JH (1985) Nature 314:721CrossRefGoogle Scholar
  3. 3.
    Ito T, Wang JX, Lin CH, Lunsford JH (1985) J Am Chem Soc 107:5062CrossRefGoogle Scholar
  4. 4.
    Driscoll DJ, Martir W, Wang JX, Lunsford JH (1985) J Am Chem Soc 107:58CrossRefGoogle Scholar
  5. 5.
    Mirodatos C, Perrichon V, Durupty MC, Moral P (1987) Stud Surf Sci Catal 34:183CrossRefGoogle Scholar
  6. 6.
    Mirodatos C, Martin GA, Bertolini JC, Saint-Just J (1989) Catal Today 4:301CrossRefGoogle Scholar
  7. 7.
    Wu MC, Truong CM, Goodman DW (1992) Phys Rev B 46:12688CrossRefGoogle Scholar
  8. 8.
    Wu MC, Truong CM, Coulter K, Goodman DW (1993) J Vac Sci Technol A, 11:2174CrossRefGoogle Scholar
  9. 9.
    Wu MC, Truong CM, Coulter K, Goodman DW (1993) J Catal 140:344CrossRefGoogle Scholar
  10. 10.
    Wu MC, Truong CM, Coulter K, Goodman DW (1992) J Am Chem Soc 114:7565CrossRefGoogle Scholar
  11. 11.
    Kimble JB, Kolts JH (1986) Energy Process 6:226Google Scholar
  12. 12.
    Korf SJ, Roos JA, de Brujin NA, van Ommen JG, Ross JRH (1987) J Chem Soc Chem Commun 54:1433Google Scholar
  13. 13.
    Korf SJ, Roos JA, de Brujin NA, van Ommen JG, Ross JRH (1988) Catal Today 2:535CrossRefGoogle Scholar
  14. 14.
    Korf SJ, Roos JA, de Brujin NA, van Ommen JG, Ross JRH (1990) Appl Catal 58:131CrossRefGoogle Scholar
  15. 15.
    Slagtern Å, Dahl IM, Jens KJ, Hansen E, Seiersten M (1992) Appl Catal A 91:13CrossRefGoogle Scholar
  16. 16.
    Phillips MD, Eastman AD (1992) Catal Lett 13:157CrossRefGoogle Scholar
  17. 17.
    Perrichon V, Durupty MC (1988) Appl Catal 42:2178Google Scholar
  18. 18.
    Wolf EE (1992) Methane conversion by oxidative processes—fundamental and engineering aspects. Van Nostrand Reinhold, New YorkGoogle Scholar
  19. 19.
    Baerns M, Ross JRH (1992) In: Thomas JM, Zamaraev KI (eds) IUPAC international union of pure and applied chemistry. Blackwell Scientific Publications, Oxford, p 315Google Scholar
  20. 20.
    Choudhary VR, Mulla SAR, Pandit MY, Chaudhari ST, Rane VH (2000) J Chem Technol Biotechnol 75:828CrossRefGoogle Scholar
  21. 21.
    Aksu Y, Driess M (2009) Angew Chem Int Ed 48:7778CrossRefGoogle Scholar
  22. 22.
    Ma JG, Aksu Y, Gregoriades LJ, Sauer J, Driess M (2010) Dalton Trans 39:103CrossRefGoogle Scholar
  23. 23.
    Arndt S, Aksu Y, Driess M, Schomäcker R (2009) Catal Lett 131:258CrossRefGoogle Scholar
  24. 24.
    Jana S, Aksu Y, Driess M (2009) Dalton Trans 9:1516CrossRefGoogle Scholar
  25. 25.
    Polarz S, Orlov A, Hoffmann A, Wagner MR, Rauch C, Kirste R, Gelhoff Y, Aksu Y, Driess M, van den Berg MWE, Lehmann M (2009) Chem Mater 21:3889CrossRefGoogle Scholar
  26. 26.
    Heitz S, Aksu Y, Merschjann C, Driess M (2010) Chem Mater 22:1376CrossRefGoogle Scholar
  27. 27.
    Heitz S, Epping JD, Aksu Y, Driess M (2010) Chem Mater 22:4563CrossRefGoogle Scholar
  28. 28.
    Kalenik Z, Wolf E (1992) In: EE Wolf (ed) Methane conversion by oxidative processes, Chapter 2. Van Nostrand Reinhold, New YorkGoogle Scholar
  29. 29.
    Anderson A, Norby T (1990) Catal Today 6:575CrossRefGoogle Scholar
  30. 30.
    Sinev MY, Bychkov VY, Korchak VN, Krylov OV (1990) Catal Today 6:543CrossRefGoogle Scholar
  31. 31.
    Campbell KD, Lunsford JH (1988) J Phys Chem 92:5796CrossRefGoogle Scholar
  32. 32.
    Abraham MM, Butler CT, Chen Y (1971) J Chem Phys 55:3752CrossRefGoogle Scholar
  33. 33.
    Schirmer OF (1971) J Phys Chem Solids 32:499CrossRefGoogle Scholar
  34. 34.
    Abraham MM, Unruh WP, Chen Y (1974) Phys Rev B 10:3540CrossRefGoogle Scholar
  35. 35.
    Chen Y, Tohver HT, Narayan J, Abraham MM (1977) Phys Rev B 16:5535CrossRefGoogle Scholar
  36. 36.
    Rius G, Herve A (1974) Solid State Commun 15:399CrossRefGoogle Scholar
  37. 37.
    Myrach P, Nilius N, Levchenko SV, Gonchar A, Risse T, Dinse KP, Boatner LA, Frandsen W, Horn R, Freund HJ, Schlögl R, Scheffler M (2010) Chem Cat Chem 2:854Google Scholar
  38. 38.
    Yates DJC, Zlotin NE (1988) J Catal 111:317CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • S. Arndt
    • 1
  • U. Simon
    • 2
  • S. Heitz
    • 1
  • A. Berthold
    • 2
  • B. Beck
    • 1
  • O. Görke
    • 2
  • J. -D. Epping
    • 1
  • T. Otremba
    • 1
  • Y. Aksu
    • 1
  • E. Irran
    • 1
  • G. Laugel
    • 1
  • M. Driess
    • 1
  • H. Schubert
    • 2
  • R. Schomäcker
    • 1
  1. 1.Institut für ChemieTechnische Universität BerlinBerlinGermany
  2. 2.Institut für WerkstoffwissenschaftenTechnische Universität BerlinBerlinGermany

Personalised recommendations