Topics in Catalysis

, 54:1143 | Cite as

On the Importance of Gradient-Corrected Correlation for van der Waals Density Functionals

  • Jess Wellendorff
  • Thomas Bligaard
Original Paper


The van der Waals density functional (vdW-DF) family of exchange–correlation functionals is a promising step towards accounting for van der Waals interactions in density functional theory. This approach consists of a nonlocal correlation term in addition to semilocal generalized gradient approximation exchange and local density approximation correlation. It has proven useful for describing vdW bonded complexes but unfortunately deteriorates the prediction of solid-state properties such as bulk lattice parameters and cohesive energies, as compared to the underlying GGA functional. By considering a broad range of different condensed matter systems including weakly interacting complexes as well as strongly bonded molecules and bulk solids, we show that inclusion of gradient-corrected correlations in vdW-DF-type calculations may not only improve the accuracy for vdW bonded systems, but also amend vdW-DF deficiencies in predicting structural properties of solids. Based on this insight we construct a prototype vdW-DF which demonstrates high accuracy in describing the dispersive interactions responsible for benzene adsorption on the noble Au(111) surface.


Density functional theory van der Waals vdW-DF RPBE + nl RPBEc2/3 + nl Au(111) Benzene 



The Center for Atomic-scale Materials Design is funded by the Lundbeck Foundation. We acknowledge support from the Danish Center for Scientific Computing. Support from the U.S. Department of Energy, Office of Basic Energy Sciences is gratefully acknowledged.


  1. 1.
    Kohn W (1999) Rev Mod Phys 71(5):1253CrossRefGoogle Scholar
  2. 2.
    Kohn W, Becke AD, Parr RG (1996) J Phys Chem 100(31):12974CrossRefGoogle Scholar
  3. 3.
    Sherrill CD (2010) J Chem Phys 132(11):110902CrossRefGoogle Scholar
  4. 4.
    Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92(24):246401CrossRefGoogle Scholar
  5. 5.
    Thonhauser T, Cooper VR, Li S, Puzder A, Hyldgaard P, Langreth DC (2007) Phys Rev B 76(12):125112CrossRefGoogle Scholar
  6. 6.
    Langreth DC et al (2009) J Phys Condens Matter 21(8):084203CrossRefGoogle Scholar
  7. 7.
    Klimes J, Bowler DR, Michaelides A (2010) J Phys Condens Matter 22(2):022201CrossRefGoogle Scholar
  8. 8.
    Cooper VR (2010) Phys Rev B 81(16):161104(R)CrossRefGoogle Scholar
  9. 9.
    Lee K, Murray ED, Kong L, Lundqvist BI, Langreth DC (2010) Phys Rev B 82(8):081101(R)Google Scholar
  10. 10.
    Vydrov OA, Van Voorhis T (2009) J Chem Phys 130:104105CrossRefGoogle Scholar
  11. 11.
    Vydrov OA, Van Voorhis T (2010) J Chem Phys 133:244103CrossRefGoogle Scholar
  12. 12.
    Jurecka P, Sponer J, Cerny J, Hobza P (2006) Phys Chem Chem Phys 8(17):1985CrossRefGoogle Scholar
  13. 13.
    Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) J Chem Phys 106(3):1063CrossRefGoogle Scholar
  14. 14.
    Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59(11):7413CrossRefGoogle Scholar
  15. 15.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77(18):3865CrossRefGoogle Scholar
  16. 16.
    Zhang YK, Yang WT (1998) Phys Rev Lett 80(4):890CrossRefGoogle Scholar
  17. 17.
    Perdew JP, Yue W (1986) Phys Rev B 33(12):8800CrossRefGoogle Scholar
  18. 18.
    Mortensen JJ, Hansen LB, Jacobsen KW (2005) Phys Rev B 71(3):035109CrossRefGoogle Scholar
  19. 19.
    Bahn SR, Jacobsen KW (2002) Comput Sci Eng 4(3):56CrossRefGoogle Scholar
  20. 20.
    Blöchl PE (1994) Phys Rev B 50(24):17953CrossRefGoogle Scholar
  21. 21.
    Roman-Perez G, Soler JM (2009) Phys Rev Lett 103(9):096102CrossRefGoogle Scholar
  22. 22.
    Wellendorff J, Kelkkanen A, Mortensen JJ, Lundqvist BI, Bligaard T (2010) Top Catal 53(5–6):378CrossRefGoogle Scholar
  23. 23.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13(12):5188CrossRefGoogle Scholar
  24. 24.
    Takatani T, Hohenstein EG, Malagoli M, Marshall MS, Sherrill CD (2010) J Chem Phys 132:144104CrossRefGoogle Scholar
  25. 25.
    Staroverov VN, Scuseria GE, Tao JM, Perdew JP (2003) J Chem Phys 119(23):12129CrossRefGoogle Scholar
  26. 26.
    Lide DR (eds) CRC handbook of chemistry and physics, 90th edn (Internet Version 2010). CRC Press/Taylor and Francis, Boca RatonGoogle Scholar
  27. 27.
    Kittel C (2005) Introduction to solid state physics, 8th edn. Wiley, New YorkGoogle Scholar
  28. 28.
    Klimes J, Bowler DR, Michaelides A (2011) Phys Rev B 83:195131CrossRefGoogle Scholar
  29. 29.
    Wöll C (2001) J Synchrotron Radiat 8:129CrossRefGoogle Scholar
  30. 30.
    Syomin D, Kim J, Ellison GB, Koel BE (2001) J Phys Chem B 105(35):8387CrossRefGoogle Scholar
  31. 31.
    Weiss K, Gebert S, Wühn M, Wadepohl H, Wöll C (1998) J Vac Sci Technol A 16(3):1017CrossRefGoogle Scholar
  32. 32.
    Rockey TJ, Yang M, Dai HL (2006) J Phys Chem B 110(40):19973CrossRefGoogle Scholar
  33. 33.
    Xi M, Yang MX, Jo SK, Bent BE, Stevens P (1994) J Chem Phys 101(10):9122CrossRefGoogle Scholar
  34. 34.
    Netzer FP (1991) Langmuir 7(11):2544CrossRefGoogle Scholar
  35. 35.
    Dudde R, Frank KH, Koch EE (1990) Surf Sci 225(3):267CrossRefGoogle Scholar
  36. 36.
    Caputo R, Prascher BP, Staemmler V, Bagus PS, Wöll C (2007) J Phys Chem A 111(49):12778CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Physics, Center for Atomic-scale Materials Design (CAMD)Technical University of DenmarkLyngbyDenmark
  2. 2.SUNCAT Center for Interface Science and CatalysisSLAC National Accelerator LaboratoryMenlo ParkUSA

Personalised recommendations