Topics in Catalysis

, 54:1115 | Cite as

Heterogeneously Catalysed Aldol Reactions in Supercritical Carbon Dioxide as Innovative and Non-Flammable Reaction Medium

Original Paper

Abstract

Aldol reactions of several aldehydes have been investigated over acidic and basic catalysts in supercritical carbon dioxide at 180 bar and 100 °C. Both acidic (Amberlyst-15, tungstosilicic acid (TSA) on SiO2 and MCM-41) and basic (hydrotalcite) materials showed interesting performance in this preliminary study under the entitled reaction conditions. Small and linear aldehydes, such as propanal, butanal, pentanal and hexanal, react more efficiently than the branched 3-methylbutanal, which is converted much slower. Whereas Amberlyst-15 showed the highest conversion based on the catalyst mass, tungstosilicic acid-based catalysts were significantly better if the rates were related to the number of acidic sites (>1000 h−1). The rate depends both on the dispersion and the kind of support. Strikingly, tungstosilicic acid (TSA) on MCM-41 was also an effective catalysts for the selective C=C double bond hydrogenation of 2-butenal and is therefore a potential catalyst for the “one-pot” synthesis of 2-ethyl-2-hexenal and 2-ethylhexanal via combined hydrogenation and aldol reaction from 2-butenal. A number of characterisation techniques, such as temperature-programmed desorption of ammonia (NH3-TPD), transmission electron microscopy (TEM), X-ray absorption spectroscopy (XAS), etc. were used to get an insight into the catalyst structure, which support a high dispersion and strong acidity of the tungsten based species on silica and MCM-41.

Keywords

Aldol reaction Supercritical carbon dioxide 2-Butenal Selective hydrogenation Amberlyst-15 Tungstosilicic acid 

References

  1. 1.
    Baiker A (1999) Chem Rev 99:453Google Scholar
  2. 2.
    Jessop PG, Leitner W (1999) Chemical synthesis using supercritical fluids. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  3. 3.
    Grunwaldt J-D, Wandeler R, Baiker A (2003) Catal Rev Sci Eng 45:1CrossRefGoogle Scholar
  4. 4.
    Licence P, Ke J, Sokolova M, Ross SK, Poliakoff M (2003) Green Chem 5:99CrossRefGoogle Scholar
  5. 5.
    Green MM, Wittcoff HA (2003) Organic chemical principles and industrial practice. Wiley-VCH, WeinheimGoogle Scholar
  6. 6.
    Kelly GJ, King F, Kett M (2002) Green Chem 4:392CrossRefGoogle Scholar
  7. 7.
    Mestres R (2004) Green Chem 6:583CrossRefGoogle Scholar
  8. 8.
    Figueras F, Lopez J (2001) In: Sheldon RA, van Bekkum H (eds) Fine chemicals through heterogeneous catalysis. Wiley-VCH, Weinheim, p 327Google Scholar
  9. 9.
    Matsui K, Kawanami H (2004) Stud Surf Sci Catal 153:363CrossRefGoogle Scholar
  10. 10.
    Matsui K, Kawanami H, Ikushima Y (2003) Chem Commun 19:2502CrossRefGoogle Scholar
  11. 11.
    Kirk-Othmer (1991) Encyclopaedia of chemical technology, 4th edn, vol. 1. Wiley-VCH, New York, p 911Google Scholar
  12. 12.
    Maki T, Yokkoyama T, Sumino Y (1988) Jpn Patent 63,68,538, Mitsubishi Chemical Industries Co., Ltd, JapanGoogle Scholar
  13. 13.
    Olson KD (1978) U.S. Patent 4,704,478, Union Carbide Corp, HoustonGoogle Scholar
  14. 14.
    Chen PY, Chu SJ, Chen CC, Chang NS, Lin WC, Chaung TK (1991) U.S. Patent 5,059,724 Industrial Technology Research Institute, TaiwanGoogle Scholar
  15. 15.
    Chen YZ, Hwang CM, Liaw CW (1996) Appl Catal A 145:231CrossRefGoogle Scholar
  16. 16.
    Seki T, Grunwaldt J-D, Baiker A (2007) Chem Commun 34:3562CrossRefGoogle Scholar
  17. 17.
    Seki T, Grunwaldt J-D, van Vegten N, Baiker A (2008) Adv Synth Catal 350:691CrossRefGoogle Scholar
  18. 18.
    Stevens JG, Bourne RA, Poliakoff M (2009) Green Chem 11:409CrossRefGoogle Scholar
  19. 19.
    Grunwaldt J-D, Baiker A (2005) Phys Chem Chem Phys 7:3526CrossRefGoogle Scholar
  20. 20.
    Reichle W (1985) J Catal 94:547CrossRefGoogle Scholar
  21. 21.
    Ravel B, Newville M (2005) J Synchrotron Rad 12:537CrossRefGoogle Scholar
  22. 22.
    Carriazo D, Domingo C, Martin C, Rives V (2008) J Solid State Chem 181:2046CrossRefGoogle Scholar
  23. 23.
    Kamiya Y, Ooka Y, Obara C, Ohnishi R, Fujita T, Kurata Y, Tsuji K, Nakajydo T, Okuhara T (2007) J Mol Catal A 262:77CrossRefGoogle Scholar
  24. 24.
    Kuang W, Rives A, Fournier M, Hubaut R (2003) Appl Catal A 250:221CrossRefGoogle Scholar
  25. 25.
    Kamiya Y, Okuhara T, Misono M, Miyaji A, Tsuji K, Nakajo T (2008) Catal Surv Asia 12:101CrossRefGoogle Scholar
  26. 26.
    Miyaji A, Echizen T, Nagata K, Yoshinaga Y, Okuhara T (2003) J Mol Catal A 201:145CrossRefGoogle Scholar
  27. 27.
    Newman AD, Brown DR, Siril P, Lee AF, Wilson K (2006) Phys Chem Chem Phys 8:2893CrossRefGoogle Scholar
  28. 28.
    Regalbuto J (2007) Catalyst preparation: science and engineering. CRC Press, Boca RatonGoogle Scholar
  29. 29.
    Huang L, Zhu Y, Zheng H, Ding G, Li Y (2009) Catal Lett 131:312CrossRefGoogle Scholar
  30. 30.
    Hubaut R, Rives A, Kuang W, Fournier M (2005) Top Catal 4:101Google Scholar
  31. 31.
    Joshi MV, Narasimhan CS (1989) J Catal 120:282CrossRefGoogle Scholar
  32. 32.
    Joshi MV, Vaidya S, Pandey R, Mukesh D (1999) J Catal 183:102CrossRefGoogle Scholar
  33. 33.
    Navalikhina MD, Krylov OV (2001) Kinet Catal 42:264CrossRefGoogle Scholar
  34. 34.
    Tauster SJ, Sinfelt JH (1970) J Phys Chem 74:3831CrossRefGoogle Scholar
  35. 35.
    van Solms N, Kouskoumvekaki IA, Michelsen ML, Kontogeorgis GM (2006) Fluid Phase Equilib 241:344CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Chemical and Biochemical EngineeringTechnical University of Denmark (DTU)Kgs. LyngbyDenmark
  2. 2.Institute for Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany
  3. 3.Institute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations