Topics in Catalysis

, 54:967 | Cite as

Water Gas Shift in Microreactors at Elevated Pressure: Platinum-Based Catalyst Systems and Pressure Effects

  • P. Piermartini
  • T. Schuhmann
  • P. Pfeifer
  • G. Schaub
Article

Abstract

A new lab-scale microstructured reactor was used for investigations on enhancing the H2/CO ratio in synthesis gas from biomass feedstocks via the water gas shift reaction. A model mixture of carbon monoxide, carbon dioxide, water, and hydrogen was used to reproduce the typical synthesis gas composition from dry biomass gasification. Catalyst layers were prepared and characterized; a combined incipient wetness impregnation and sol–gel technology was applied. The catalytic activities of Pt/CeO2 and Pt/CeO2/Al2O3 films were determined at temperatures of 400–600 °C and pressures of up to 45 bars. Increased pressure leads to higher values of CO conversion and to increased formation of hydrocarbons (CH4, C2H6, etc.) and coke. Methane is the main by-product, and coke formation was attributed to the catalytic activity of peripheral reactor components.

Keywords

Water gas shift Microstructured reactor Biomass feedstock Syngas conditioning Platinum-ceria catalyst 

Literature

  1. 1.
    Henrich E, Dinjus E (2002) Pyrolysis and gasification of biomass and waste. In: Proceeding of expert meeting. CPL Press, Straßbourg, NewburyGoogle Scholar
  2. 2.
    Pfeifer P, Zscherpe T, Haas-Santo K, Dittmeyer R (2011) Investigations on a Pt/TiO2 catalyst coating for oxidation of SO2 in a microstructured reactor for operation with forced decreasing temperature profile. Appl Catal A General 391(1–2):289–296CrossRefGoogle Scholar
  3. 3.
    Aartun I, Venvik HJ, Holmen A, Pfeifer P, Görke O, Schubert K (2005) Temperature profiles and residence time effects during catalytic partial oxidation and oxidative steam reforming of propane in metallic microchannel reactors. Catal Today 110(1–2):98–107CrossRefGoogle Scholar
  4. 4.
    Baier T, Kolb G (2007) Temperature control of the water gas shift reaction in microstructured reactors. Chem Eng Sci 62(17):4602–4611CrossRefGoogle Scholar
  5. 5.
    Lerou JJ, Tonkovich AL, Silva L, Perry S, McDaniel J (2010) Microchannel reactor architecture enables greener processes. Chem Eng Sci 65(1):380–385CrossRefGoogle Scholar
  6. 6.
    Henrich E, Dahmen N, Dinjus E (2007) Economic aspects of biosynfuel production via bioslurry gasification in ETA-florence, BerlinGoogle Scholar
  7. 7.
    Henrich E, Weirich F (2004) A twin screw mixer reactor for fast pyrolysis of biomass. In: 2nd World conference on biomass for energy, industry and climate protection, RomeGoogle Scholar
  8. 8.
    Raffelt K, Henrich E, Koegel A, Stahl R, Steinhardt J, Weirich F (2004) Stable slurries from biomass pyrolysis products for entrained flow gasification. In: 2nd World conference on biomass for energy, industry and climate protection, RomeGoogle Scholar
  9. 9.
    Santo U, Seifert H, Kolb T, Krebs L, Kuhn D (2007) Conversion of biomass based slurry in an entrained flow gasifier. Chem Engg Technol 30(7):967–969CrossRefGoogle Scholar
  10. 10.
    Henrich E, Weirich F Pressurised entrained flow gasifier for biomass. In: IT3’02 conference, New Orleans, LouisianaGoogle Scholar
  11. 11.
    Vanden Bussche KM, Froment GF (1996) A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3 catalyst. J Catal 161:1–10CrossRefGoogle Scholar
  12. 12.
    Pfeifer P, Haas-Santo K, Piermartini P, Zscherpe T, Dittmeyer R (2010) Optimizing reaction rates of exothermic equilibrium reactions by forced temperature profiles in microreactors. In: ISCRE 21, 21st International symposium on chemistry reaction engineering, PhiladelphiaGoogle Scholar
  13. 13.
    Pfeifer P, Haas-Santo K, Thormann J, Schubert K (2007) One pass synthesis of pure sulphur trioxide in microreactors. Chem Today 25(2):42–46Google Scholar
  14. 14.
    Lei Y, Cant NW, Trimm DL (2006) The origin of rhodium promotion of Fe3O4–Cr2O3 catalysts for the high-temperature water-gas shift reaction. J Catal 239(1):227–236CrossRefGoogle Scholar
  15. 15.
    Natesakhawat S, Wang X, Zhang L, Ozkan US (2006) Development of chromium-free iron-based catalysts for high-temperature water-gas shift reaction. J Mole Catal A: Chem 260(1–2):82–94CrossRefGoogle Scholar
  16. 16.
    Yu J, Tian FJ, McKenzie LJ, Li CZ (2006) Char-supported nano iron catalyst for water-gas-shift reaction: hydrogen production from coal/biomass gasification. Process Safety Environ Prot 84(2):125–130CrossRefGoogle Scholar
  17. 17.
    Sandoval A, Gómez-Cortés A, Zanella R, Díaz G, Saniger JM (2007) Gold nanoparticles: support effects for the WGS reaction. J Mole Catal A Chem 278(1–2):200–208CrossRefGoogle Scholar
  18. 18.
    Hurtado-Juan M-A, Yeung CMY, Tsang SC (2008) A study of co-precipitated bimetallic gold catalysts for water-gas shift reaction. Catal Commun 9(7):1551–1557CrossRefGoogle Scholar
  19. 19.
    Haryanto A, Fernando S, Adhikari S (2007) Ultrahigh temperature water gas shift catalysts to increase hydrogen yield from biomass gasification. Catal Today 129(3–4):269–274CrossRefGoogle Scholar
  20. 20.
    Germani G, Alphonse P, Courty M, Schuurman Y, Mirodatos C (2005) Platinum/ceria/alumina catalysts on microstructures for carbon monoxide conversion. Catal Today 110(1–2):114–120CrossRefGoogle Scholar
  21. 21.
    Kolb G, Pennemann H, Zapf R (2005) Water-gas shift reaction in micro-channels–results from catalyst screening and optimisation. Catal Today 110(1–2):121–131CrossRefGoogle Scholar
  22. 22.
    Goerke O, Pfeifer P, Schubert K (2004) Water gas shift reaction and selective oxidation of CO in microreactors. Appl Catal A General 263(1):11–18CrossRefGoogle Scholar
  23. 23.
    Haas-Santo K, Fichtner M, Schubert K (2001) Preparation of microstructure compatible porous supports by sol-gel synthesis for catalyst coatings. Appl Catal A General 220(1–2):79–92CrossRefGoogle Scholar
  24. 24.
    Özer N, Cronin JP, Akyuz S (1999) Electrochromic performance of sol-gel deposited CeO2 films. In: SPIE conference on switchable materials and flat panel displays. SPIE, Denver, Colorado, pp 103–109Google Scholar
  25. 25.
    Thormann J (2009) Diesel-dampfreformierung in mikrostrukturreaktoren, in institute for micro process engineering (IMVT). Karlsruhe Institute of Technology, KarlsruheGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • P. Piermartini
    • 1
  • T. Schuhmann
    • 1
  • P. Pfeifer
    • 1
  • G. Schaub
    • 2
  1. 1.Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany
  2. 2.Engler-Bunte-Institute Division of Fuel Chemistry and Technology, Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations