Advertisement

Topics in Catalysis

, 54:845 | Cite as

Steam Reforming of Methane Over Nickel: Development of a Multi-Step Surface Reaction Mechanism

  • L. Maier
  • B. Schädel
  • K. Herrera Delgado
  • S. Tischer
  • O. DeutschmannEmail author
Original Paper

Abstract

A detailed multi-step reaction mechanism is developed for modeling steam reforming of methane over nickel-based catalysts. The mechanism also includes partial and total oxidation reactions, water–gas shift reactions, formation of carbon monolayers, and methanation reactions. A method is presented for ensuring thermodynamic consistency in the development of surface reaction mechanisms. The applicability of the mechanism is tested by simulating experimental investigations of SR of methane on a Ni-coated monolithic cordierite catalyst as well as experimental studies from literature. The reactive flow in the channels of the experimentally used monolithic structures is modeled by a two-dimensional flow field analysis of a single monolith channel coupled with the reaction mechanism developed. The gas composition and surface coverage with adsorbed species are calculated as function of the position in the channel. The model developed is able to properly describe steam reforming of methane over the nickel catalysts for wide ranges of temperature and steam/methane ratio.

Keywords

Catalysis Reforming Methane Synthesis gas Surface reaction mechanism Nickel Numerical simulation 

References

  1. 1.
    Rostrup-Nielsen JR (1984) In: Anderson JR, Boudart M (eds) Catalytic steam reforming in catalysis—science and technology. Springer-Verlag, BerlinGoogle Scholar
  2. 2.
    Levent M, Gunn DJ, El Bousiffi MA (2003) Int J Hydrogen Energy 28:945CrossRefGoogle Scholar
  3. 3.
    Michael BC, Donazzi A, Schmidt A (2009) J Catal 265:117CrossRefGoogle Scholar
  4. 4.
    Trimm DL (1997) Catal Today 37:233CrossRefGoogle Scholar
  5. 5.
    Yang Z, Zhang Y, Wang X (2010) Energy Fuels 24:785CrossRefGoogle Scholar
  6. 6.
    Ochoa-Fernández E, Lacalle-Vilà C, Christensen KO, Walmsley JC, Rønninga M, Holmen A, Chen D (2007) Top Catal 45:3–8CrossRefGoogle Scholar
  7. 7.
    Dissanayake D, Rosynek MP, Kharas KS, Lunsford JH (1991) J Catal 132:117CrossRefGoogle Scholar
  8. 8.
    Vermeiren WJM, Blomsma E, Jacobs PA (1992) J Catal 13:427Google Scholar
  9. 9.
    Hannemann S, Grunwaldt JD, van Vegten N (2007) Catal Today 126:54CrossRefGoogle Scholar
  10. 10.
    Hickman DA, Schmidt LD (1993) AIChE J 39:1164CrossRefGoogle Scholar
  11. 11.
    Choudhary VR, Rajput AM, Rane VH (1992) Catal Lett 16:269CrossRefGoogle Scholar
  12. 12.
    Qin D, Lapszewicz J, Jiang X (1996) J Catal 159:140CrossRefGoogle Scholar
  13. 13.
    Gadalla AM, Sommer ME (1989) Chem Eng Sci 44:2825CrossRefGoogle Scholar
  14. 14.
    Liu ZW, Roh HS, Jun KW (2003) J Ind Eng Chem 9:753Google Scholar
  15. 15.
    Bradford MCJ, Vannice MA (1996) Appl Catal A 142:97CrossRefGoogle Scholar
  16. 16.
    Scognamiglio D, Russo L, Maffettone P (2009) Ind Eng Chem Res 48:1804CrossRefGoogle Scholar
  17. 17.
    Schwiedernoch R, Tischer S, Correa C, Deutschmann O (2003) Chem Eng Sci 58:633CrossRefGoogle Scholar
  18. 18.
    Deutschmann O, Schmidt L (1998) AIChE J 44:2465CrossRefGoogle Scholar
  19. 19.
    Mhadeshwar AB, Vlachos DGJ (2005) Phys Chem B 109:16819CrossRefGoogle Scholar
  20. 20.
    Deutschmann O, Schwiedernoch R, Maier L, Chatterjee D (2001) In: Iglesia E, Spivey JJ, Fleisch TH (eds) Natural gas conversion VI, vol 136. Studies in surface science and catalysis. Elsevier, AmsterdamGoogle Scholar
  21. 21.
    Quiceno R, Pérez-Ramírez J, Warnatz J, Deutschmann O (2006) Appl Catal A 303:166CrossRefGoogle Scholar
  22. 22.
    Xu J, Froment GF (1989) AIChE J 35:88CrossRefGoogle Scholar
  23. 23.
    Chen D, Lødeng R, Omdahl K, Anundskås A, Olsvik O, Holmen A (2001) Stud Surf Sci Catal 139:93CrossRefGoogle Scholar
  24. 24.
    Rostrup-Nielsen JR, Hansen JHB (1993) J Catal 144:38CrossRefGoogle Scholar
  25. 25.
    Rostrup-Nielsen JR, Christiansen LJ, Bak Hausen J-H (1988) Appl Catal 43:287CrossRefGoogle Scholar
  26. 26.
    Bengaard HS, Nørskov JK, Sehested J, Clausen BS, Nielsen LP, Molenbroek AM, Rostrup-Nielsen JR (2002) J Catal 209:365CrossRefGoogle Scholar
  27. 27.
    Hoang DL, Chan SH, Ding OL (2005) Chem Eng J 112:1CrossRefGoogle Scholar
  28. 28.
    Mogensen D, Grunwaldt J-D, Hendriksen PV, Dam-Johansen K, Nielsen JU (2011) J Power Sources 196:25CrossRefGoogle Scholar
  29. 29.
    Enger BC, Lødeng R, Holmen A (2008) Appl Catal A 346:1–27CrossRefGoogle Scholar
  30. 30.
    Wei J, Iglesia E (2004) J Catal 224:370CrossRefGoogle Scholar
  31. 31.
    Aparicio LM (1997) J Catal 165:262CrossRefGoogle Scholar
  32. 32.
    Chen D, Lødeng R, Svendsen H, Holmen A (2011) Ind Eng Chem Res 50(5):2600CrossRefGoogle Scholar
  33. 33.
    Wang S-G, Liao X-Y, Hu J, Cao D-B, Li Y-W, Wang J, Jiao H (2007) Surf Sci 601:1271CrossRefGoogle Scholar
  34. 34.
    Wang S-G, Cao D-B, Li Y-W, Wang J, Jiao H (2006) J Phys Chem B 110:9976CrossRefGoogle Scholar
  35. 35.
    Blaylock DW, Ogura T, Green WH, Beran GJO (2009) J Phys Chem C 113:4898CrossRefGoogle Scholar
  36. 36.
    Hecht E, Gupta GK, Zhu H, Dean AM, Kee RJ, Maier L, Deutschmann O (2005) Appl Catal A 295:40CrossRefGoogle Scholar
  37. 37.
    Janardhanan VM, Deutschmann O (2006) J Power Sources 162:1192CrossRefGoogle Scholar
  38. 38.
    Schädel BT, Deutschmann O (2007) In: Noronha FB, Schmal M, Sousa-Aguiar EF (eds) Natural gas conversion VIII, vol 167. Studies in surface science and catalysis. Elsevier, Amsterdam, p 207Google Scholar
  39. 39.
    Schädel BT, Duisberg M, Deutschmann O (2009) Catal Today 142:42CrossRefGoogle Scholar
  40. 40.
    Raja LL, Kee RJ, Deutschmann O, Warnatz J, Schmidt LD (2000) Catal Today 59:47CrossRefGoogle Scholar
  41. 41.
    Coltrin ME, Kee RJ, Rupley FM (1990) SURFACE CHEMKIN, version 4.0, a Fortran package for analyzing heterogeneous chemical kinetics at a solid-surface–gas-phase interface. Sandia National Laboratories report, SAND90-8003BGoogle Scholar
  42. 42.
    Deutschmann O (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Computational fluid dynamics simulation of catalytic reactors. Handbook of heterogeneous catalysis, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  43. 43.
    Deutschmann O, Tischer S, Kleditzsch S, Janardhanan VM, Correa C, Chatterjee D, Mladenov N, Minh HD (2008) DETCHEM™ Software package, 2.2 edn. Karlsruhe. www.detchem.com.
  44. 44.
    Tischer S, Deutschmann O (2005) Catal Today 105:407CrossRefGoogle Scholar
  45. 45.
    Shustorovich E (1990) Adv Catal 37:101CrossRefGoogle Scholar
  46. 46.
    Shustorovich E, Sellers H (1998) Surf Sci Rep 31:5CrossRefGoogle Scholar
  47. 47.
    Bell AT (1991) In: Shustorovich E (ed) Metal surface reaction energetics: theory and application to heterogeneous catalysis, chemisorption and surface diffusion. Wiley-VCH, WeinheimGoogle Scholar
  48. 48.
    Beebe TP Jr, Goodman DW, Kay BD, Yates JT Jr (1987) J Chem Phys 87:2305CrossRefGoogle Scholar
  49. 49.
    Chorkendorff I, Alstrup I, Ullmann S (1990) Surf Sci 227:291CrossRefGoogle Scholar
  50. 50.
    Nielsen BØ, Luntz AC, Holmblad PM, Chorkendorff I (1995) Catal Lett 32:15CrossRefGoogle Scholar
  51. 51.
    Yang H, Whitten JL (1992) J Chem Phys 96:5529CrossRefGoogle Scholar
  52. 52.
    Kratzer P, Hammer B, Nørskov JK (1996) J Chem Phys 105:5595CrossRefGoogle Scholar
  53. 53.
    Henkelman G, Arnaldsson A, Jonsson H (2006) J Chem Phys 124:4706CrossRefGoogle Scholar
  54. 54.
    Michaelides A, Hu P (2000) J Chem Phys 112:6006CrossRefGoogle Scholar
  55. 55.
    Michaelides A, Hu P (2000) J Chem Phys 112:8120CrossRefGoogle Scholar
  56. 56.
    Ceyer ST, Yang QY, Lee MB, Beckeler JD, Johnson AD (1993) In: Bibby DH, Chang CD. Howe RF, Yurchak S (eds) Methane conversion. Elsevier, AmsterdamGoogle Scholar
  57. 57.
    Erdohelyi A, Cserenyi J, Solymosi F (1993) J Catal 141:287CrossRefGoogle Scholar
  58. 58.
    Yan Q, Wu T, Yang L, Luo C, Weng W, Chao Z, Wan H (2000) J Nat Gas Chem 9:1Google Scholar
  59. 59.
    Hei MJ, Chen HB, Yi J, Lin YJ, Lin YZ, Wie G, Liao DW (1998) Surf Sci 417:82CrossRefGoogle Scholar
  60. 60.
    Pistonesi C, Juan A, Irigoyen B, Amadeo N (2007) Appl Surf Sci 253:4427CrossRefGoogle Scholar
  61. 61.
    Mhadeshwar AB, Wang H, Vlachos DGJ (2003) Phys Chem B 107:12721CrossRefGoogle Scholar
  62. 62.
    Kroll VCH, Swaan HM, Mirodatos C (1996) J Catal 161:409CrossRefGoogle Scholar
  63. 63.
    Ryu J-H, Lee KY (2007) J Power Sources 171:499CrossRefGoogle Scholar
  64. 64.
    Heon J, Yoon WL (2003) J Power Sources 124:76CrossRefGoogle Scholar
  65. 65.
    Zhu H, Kee RJ, Janardhanan VM, Deutschmann O, Goodwin DG (2005) J Electrochem Soc 152:A2427CrossRefGoogle Scholar
  66. 66.
    Christmann K (1991) In: Baumgärtel H, Franck EU, Grünbein W (eds) Topics in physical chemistry, vol 1. Steinkopf Verlag, DarmstadtGoogle Scholar
  67. 67.
    Brass SG, Ehrlich G (1987) Surf Sci 187:21CrossRefGoogle Scholar
  68. 68.
    Matsushima T (1983) Surf Sci 127:403CrossRefGoogle Scholar
  69. 69.
    Christmann K, Scchober O, Ertl G, Neumann M (1974) J Chem Phys 60:4528CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • L. Maier
    • 1
  • B. Schädel
    • 2
  • K. Herrera Delgado
    • 2
  • S. Tischer
    • 2
  • O. Deutschmann
    • 1
    • 2
    Email author
  1. 1.Institute for Catalysis Research and TechnologyKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations