Advertisement

Topics in Catalysis

, 54:669 | Cite as

Methanol Adsorption on V2O3(0001)

  • Y. Romanyshyn
  • S. Guimond
  • D. Göbke
  • J. M. Sturm
  • H. KuhlenbeckEmail author
  • J. Döbler
  • M. V. Ganduglia-Pirovano
  • J. Sauer
  • H.-J. Freund
Original Paper

Abstract

Well ordered V2O3(0001) layers may be grown on Au(111) surfaces. These films are terminated by a layer of vanadyl groups which may be removed by irradiation with electrons, leading to a surface terminated by vanadium atoms. We present a study of methanol adsorption on vanadyl terminated and vanadium terminated surfaces as well as on weakly reduced surfaces with a limited density of vanadyl oxygen vacancies produced by electron irradiation. Different experimental methods and density functional theory are employed. For vanadyl terminated V2O3(0001) only molecular methanol adsorption was found to occur whereas methanol reacts to form formaldehyde, methane, and water on vanadium terminated and on weakly reduced V2O3(0001). In both cases a methoxy intermediate was detected on the surface. For weakly reduced surfaces it could be shown that the density of methoxy groups formed after methanol adsorption at low temperature is twice as high as the density of electron induced vanadyl oxygen vacancies on the surface which we attribute to the formation of additional vacancies via the reaction of hydroxy groups to form water which desorbs below room temperature. Density functional theory confirms this picture and identifies a methanol mediated hydrogen transfer path as being responsible for the formation of surface hydroxy groups and water. At higher temperature the methoxy groups react to form methane, formaldehyde, and some more water. The methane formation reaction consumes hydrogen atoms split off from methoxy groups in the course of the formaldehyde production process as well as hydrogen atoms still being on the surface after being produced at low temperature in the course of the methanol → methoxy + H reaction.

Keywords

Methanol oxidation Methanol Methoxy Hydroxy Formaldehyde V2O3(0001) 

Notes

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft through their Sonderforschungsbereich 546 ‘Transition Metal Oxide Aggregates’. The Fonds der Chemischen Industrie is gratefully acknowledged for financial support. We acknowledge the Helmholtz-Zentrum Berlin—Electron storage ring BESSY II for provision of synchrotron radiation at beamline UE52-PGM.

References

  1. 1.
    Grzybowska-Swierkosz B, Trifiro F, Vedrine JC (eds) (1997) Vanadia catalysts for selective oxidation of hydrocarbons and their derivatives. In: Applied catalysis A: general, vol 157. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Busca G, Lietti L, Ramis G, Berti F (1998) Appl Catal B 18:1Google Scholar
  3. 3.
    Cai Y, Ozkan US (1991) Appl Catal 78:241Google Scholar
  4. 4.
    Wachs IE (2005) Catal Today 100:79Google Scholar
  5. 5.
    Burcham LJ, Deo G, Gao X, Wachs IE (2000) Top Catal 11/12:85Google Scholar
  6. 6.
    Romanyshyn Y, Guimond S, Kuhlenbeck H, Kaya S, Blum RP, Niehus H, Shaikhutdinov S, Simic-Milosevic V, Nilius N, Freund H-J, Ganduglia-Pirovano MV, Fortrie R, Döbler J, Sauer J (2008) Top Catal 50:106Google Scholar
  7. 7.
    Wang Q, Madix RJ (2002) Surf Sci 496:51Google Scholar
  8. 8.
    Wong GS, Concepcion MR, Vohs JM (2002) J Phys Chem B 106:6451Google Scholar
  9. 9.
    Wong GS, Kragten DD, Vohs JM (2000) Surf Sci 452:L293Google Scholar
  10. 10.
    Wong GS, Kragten DD, Vohs JM (2001) J Phys Chem B 105:1366Google Scholar
  11. 11.
    Farfan-Arribas E, Madix RJ (2003) Surf Sci 544:241Google Scholar
  12. 12.
    Mullins DR, Robbins MD, Zhou J (2006) Surf Sci 600:1547Google Scholar
  13. 13.
    Dupuis A-C, Abu Haija M, Richter B, Kuhlenbeck H, Freund H-J (2003) Surf Sci 539:99Google Scholar
  14. 14.
    Feulner P, Menzel D (1980) J Vac Sci Technol 17:662Google Scholar
  15. 15.
    Abu Haija M, Guimond S, Romanyshyn Y, Uhl A, Kuhlenbeck H, Todorova TK, Ganduglia-Pirovano MV, Döbler J, Sauer J, Freund H-J (2006) Surf Sci 600:1497Google Scholar
  16. 16.
    Kresse G, Surnev S, Schoiswohl J, Netzer FP (2004) Surf Sci 555:118Google Scholar
  17. 17.
    Schoiswohl J, Sock M, Surnev S, Ramsey MG, Netzer FP, Kresse G, Andersen JN (2004) Surf Sci 555:101Google Scholar
  18. 18.
    Nilius N, Brázdová V, Ganduglia-Pirovano M-V, Simic-Milosevic V, Sauer J, Freund H-J (2009) New J Phys 11:093007Google Scholar
  19. 19.
  20. 20.
    Pratt SJ, Escott DK, King DA (2003) J Chem Phys 119:10868Google Scholar
  21. 21.
    Bolina AS, Wolff AJ, Brown WA (2005) J Chem Phys 122:044713Google Scholar
  22. 22.
    Mudalige K, Trenary M (2002) Surf Sci 504:208Google Scholar
  23. 23.
    de Barros RB, Garcia AR, Ilharco LM (2003) Surf Sci 532:185Google Scholar
  24. 24.
    Andersson MP, Uvdal P, MacKerell AD Jr (2002) J Phys Chem B 106:5200Google Scholar
  25. 25.
    Crossley A, King DA (1977) Surf Sci 68:528Google Scholar
  26. 26.
    Crossley A, King DA (1980) Surf Sci 95:131Google Scholar
  27. 27.
    Linke R, Curulla D, Hopstaken MJP, Niemantsverdriet JW (2001) J Chem Phys 115:8209Google Scholar
  28. 28.
    Hammaker RM, Francis SA, Eischens RP (1965) Spectrochim Acta 21:1295Google Scholar
  29. 29.
    Prince KC, Richter R, de Simone M, Alagia M, Coreno M (2003) J Phys Chem A 107:1955Google Scholar
  30. 30.
    Plashkevych O, Privalov T, Ågren H, Carravetta V, Ruud K (2000) Chem Phys 260:11Google Scholar
  31. 31.
    Prince KC, Richter R, de Simone M, Coreno M (2002) Surf Rev Lett 9:159Google Scholar
  32. 32.
    Stöhr J, Outka DA, Baberschke K, Arvanitis D, Horsley JA (1987) Phys Rev B 36:2976Google Scholar
  33. 33.
    Stöhr J, Sette F, Johnson AL (1984) Phys Rev Lett 53:1684Google Scholar
  34. 34.
    Lindner Th, Somers J, Bradshaw AM, Kilcoyne ALD, Woodruff DP (1988) Surf Sci 203:333Google Scholar
  35. 35.
    Outka DA, Stöhr J, Madix RJ, Rotermund HH, Hermsmeier B, Solomon J (1987) Surf Sci 185:53Google Scholar
  36. 36.
    Ishii I, Hitchcock AP (1988) J Electron Spectrosc Relat Phenom 46:55Google Scholar
  37. 37.
    Mensch MW, Byrd CM, Cox DF (2003) Catal Today 85:279Google Scholar
  38. 38.
    Zhou J, Mullins DR (2006) Surf Sci 600:1540Google Scholar
  39. 39.
    Abu Haija M, Guimond S, Uhl A, Kuhlenbeck H, Freund H-J (2006) Surf Sci 600:1040Google Scholar
  40. 40.
    Göbke D, Romanyshyn Y, Guimond S, Sturm JM, Kuhlenbeck H, Döbler J, Reinhardt U, Ganduglia-Pirovano MV, Sauer J, Freund H-J (2009) Angew Chem Int Ed 48:3695Google Scholar
  41. 41.
    Redhead PA (1962) Vacuum 12:203Google Scholar
  42. 42.
    Grimme S (2006) J Comput Chem 27:1787Google Scholar
  43. 43.
    Kerber T, Sierka M, Sauer J (2008) J Comput Chem 29:2088Google Scholar
  44. 44.
    Svelle S, Tuma C, Rozanska X, Kerber T, Sauer J (2009) J Am Chem Soc 131:816Google Scholar
  45. 45.
    Döbler J, Pritzsche M, Sauer J (2005) J Am Chem Soc 127:10861Google Scholar
  46. 46.
    Sauer J, Döbler J (2004) Dalton Trans 19:3116Google Scholar
  47. 47.
    Rozanska X, Sauer J (2008) Int J Quantum Chem 108:2223Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Y. Romanyshyn
    • 1
  • S. Guimond
    • 1
    • 6
  • D. Göbke
    • 1
  • J. M. Sturm
    • 1
    • 3
  • H. Kuhlenbeck
    • 1
    Email author
  • J. Döbler
    • 2
    • 4
  • M. V. Ganduglia-Pirovano
    • 2
    • 5
  • J. Sauer
    • 2
  • H.-J. Freund
    • 1
  1. 1.Chemical Physics DepartmentFritz Haber Institute of the Max Planck SocietyBerlinGermany
  2. 2.Department of ChemistryHumbold-Universität zu BerlinBerlinGermany
  3. 3.FOM-Institute for Plasma Physics RijnhuizenNieuwegeinThe Netherlands
  4. 4.Computer and Media ServicesHumbold-Universität zu BerlinBerlinGermany
  5. 5.Institute of Catalysis and Petrochemistry of the Spanish National Research CouncilMadridSpain
  6. 6.Empa, Swiss Federal Laboratories for Materials Science and TechnologySt. GallenSwitzerland

Personalised recommendations