Advertisement

Topics in Catalysis

, 54:614 | Cite as

Improvement of the Structural Model for the M1 Phase Mo–V–Nb–Te–O Propane (Amm)oxidation Catalyst

  • Xin Li
  • Douglas J. Buttrey
  • Douglas A. Blom
  • Thomas Vogt
Original Paper

Abstract

An improved structural model for the M1 phase in the Mo–V–Nb–Te–O propane (amm)oxidation catalyst has been refined after accounting for a molybdenum-substituted-V2O5 impurity and by making adjustments based on aberration-corrected imaging results. The newly refined unit cell has Pba2 symmetry with a = 21.134(1) Å, b = 26.647(1) Å, c = 4.0140(2) Å, and Z = 4, in good agreement with our earlier findings (DeSanto et al. Top Catal 23:23 [20], DeSanto et al. Z Kristallogr 219:152 [22]). From the newly refined occupancies, the formula unit is {TeO}0.86(1)·Mo7.48(6)V1.52(6)NbO28. As in the earlier models, V is concentrated in sites that link the pentagonal rings of M1. Careful analysis of bond valences, in combination with the electroneutrality constraint, suggest that the linking sites S3, S4, and S7 all have mixed Mo/V occupancies and valences (d 1/d 0). Furthermore, these sites may contain a mix of Mo5+ and V5+, which is consistent with the proposed catalytic mechanism in which V5+ plays an important role in propane activation.

Keywords

M1 catalyst Propane (amm)oxidation Rietveld refinement Bond valence sum Hydrogen abstraction 

Notes

Acknowledgment

We would like to acknowledge the U.S. Department of Energy for having provided support for beamline X7A at the National Synchrotron Light Source at Brookhaven National Laboratory (no. DEAC02-98CH10886), although this beamline is no longer in operation. We also acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities providing the foundation on which this work was built. TV and DAB would like to thank the National Academies Keck Future Initiative and the Korean Ministry of Science, Education and Technology for funding.

References

  1. 1.
    Grasselli RK, Burrington JD (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, 2nd edn. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, pp 3479–3489Google Scholar
  2. 2.
    Grasselli RK, Tenhover MA (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, vol 7, 2nd edn. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, pp 3489–3503Google Scholar
  3. 3.
    Grasselli RK, Burrington JD, Buttrey DJ, DeSanto P Jr, Lugmaird CG, Volpe AF Jr, Weingand T (2003) Top Catal 23:5CrossRefGoogle Scholar
  4. 4.
    Grasselli RK, Buttrey DJ, DeSanto P Jr, Burrington JD, Lugmaird CG, Volpe AF Jr, Weingand T (2004) Catal Today 91–92:251CrossRefGoogle Scholar
  5. 5.
    Grasselli RK (1999) Catal Today 49:141CrossRefGoogle Scholar
  6. 6.
    Grasselli RK (2002) Top Catal 21:79CrossRefGoogle Scholar
  7. 7.
    Ushikubo T, Oshima K, Kayo A, Umezawa T, Kiyono K, Sawaki I (1993) European Patent 529853Google Scholar
  8. 8.
    Ushikubo T, Oshima K, Kayo A, Umezawa T, Kiyono K, Sawaki I (1994) US Patent 5281745Google Scholar
  9. 9.
    Ushikubo T, Nakamura H, Koyasu Y, Wajiki S (1995) US Patent 5380933Google Scholar
  10. 10.
    Ushikubo T, Oshima K, Kayo A, Hatano M (1997) In: Li C, Xin Q (eds) Spillover and migration of surface species on catalysts, vol 112. Elsevier, Amsterdam, p 473CrossRefGoogle Scholar
  11. 11.
    Holmberg J, Grasselli RK, Andersson A (2004) Appl Catal A Gen 270:121CrossRefGoogle Scholar
  12. 12.
    Baca M, Pigamo A, Dubois JL, Millet JMM (2003) Top Catal 23:39CrossRefGoogle Scholar
  13. 13.
    Botella P, García-González E, López-Nieto JM, González-Calbet JM (2005) Solid State Sci 7:507CrossRefGoogle Scholar
  14. 14.
    Asakura K, Nakatani K, Kubota T, Iwasawa Y (2000) J Catal 194:309CrossRefGoogle Scholar
  15. 15.
    Vitry D, Morikawa Y, Dubois JL, Ueda W (2003) App Catal A Gen 251:411CrossRefGoogle Scholar
  16. 16.
    Raveendran Shiju N, Liang X, Weimer AW, Liang C, Dai S, Guliants VV (2008) J Am Chem Soc 130:5850CrossRefGoogle Scholar
  17. 17.
    Sanfiz AC, Hansen TW, Girgsdies F, Timpe O, Rödel E, Ressler T, Trunschke A, Schlögl R (2008) Top Catal 50:19CrossRefGoogle Scholar
  18. 18.
    Millet JMM, Roussel H, Pigamo A, Dubois JL, Jumas JC (2002) Appl Catal A Gen 232:77CrossRefGoogle Scholar
  19. 19.
    Lundberg M, Sundberg M (1993) Ultramicroscopy 52:429CrossRefGoogle Scholar
  20. 20.
    DeSanto P, Buttrey DJ, Grasselli RK, Lugmair CG, Volpe AF, Toby BH, Vogt T (2003) Top Catal 23:23CrossRefGoogle Scholar
  21. 21.
    Young RA (1993) In: Young RA (ed) The Rietveld method. Oxford University Press, New York, pp 1–38Google Scholar
  22. 22.
    DeSanto P, Buttrey DJ, Grasselli RK, Lugmair CG, Volpe AF, Toby BH, Vogt T (2004) Z Kristallogr 219:152CrossRefGoogle Scholar
  23. 23.
    DeSanto P, Buttrey DJ, Grasselli RK, Pyrz WD, Lugmair CG, Volpe AF, Vogt T, Toby BH (2006) Top Catal 38:31CrossRefGoogle Scholar
  24. 24.
    Pyrz WD, Blom DA, Raveendran Shiju N, Guliants VV, Vogt T, Buttrey DJ (2008) J Phys Chem C 112:10043CrossRefGoogle Scholar
  25. 25.
    Pyrz WD, Blom DA, Vogt T, Buttrey DJ (2008) Angew Chem Int Ed 47:2788CrossRefGoogle Scholar
  26. 26.
    Pyrz WD, Blom DA, Sadakane M, Kodato K, Ueda W, Vogt T, Buttrey DJ (2010) Chem Mater 22:2033CrossRefGoogle Scholar
  27. 27.
    Blom DA, Li X, Mitra S, Vogt T, Buttrey DJ (2011) Chem Cat Chem (in press)Google Scholar
  28. 28.
    Blom DA, Pyrz WD, Vogt T, Buttrey DJ (2009) J Electron Microsc 58(3):193CrossRefGoogle Scholar
  29. 29.
    Toby BH (2001) J Appl Crystalogr 34:210CrossRefGoogle Scholar
  30. 30.
    McCusker LB, Von Dreele RB, Cox DE, Louër D, Scardi P (1999) J Appl Crystallogr 32:36CrossRefGoogle Scholar
  31. 31.
    Von Dreele RB (1993) In: Young RA (ed) The Rietveld method. Oxford University Press, New York, pp 227–235Google Scholar
  32. 32.
    Brown ID, Altermatt D (1985) Acta Crystallogr B 41:244CrossRefGoogle Scholar
  33. 33.
    Brese NE, O’Keeffe M (1991) Acta Crystallogr B 47:192CrossRefGoogle Scholar
  34. 34.
    Brown ID (1981) In: O’Keeffe M, Navrotsky A (eds) Structure and bonding in crystals, vol II. Academic Press, New York, pp 1–30Google Scholar
  35. 35.
    Solsona B, López-Nieto JM, Oliver JM, Gumbau JP (2004) Catal Today 91–92:247CrossRefGoogle Scholar
  36. 36.
    Sanfiz AC, Hansen TW, Teschner D, Schnörch P, Girgsdies F, Trunschke A, Schlögl R, Looi MH, Abd Hamid SB (2010) J Phys Chem C 114:1912CrossRefGoogle Scholar
  37. 37.
    Plyasova LM, Solov’eva LP, Tsybulya SV, Kryukova GN, Zabolotnyi VA, Olen’kova IP (1991) J Struct Chem 32:110CrossRefGoogle Scholar
  38. 38.
    Molchanov VV, Plyasova LM, Goidin VV, Lapina OB, Zaikovskii VI (1995) Inorg Mater 31:1121Google Scholar
  39. 39.
    Kihlborg L (1969) Acta Chem Scand 23:1834CrossRefGoogle Scholar
  40. 40.
    Ekström T, Nygren M (1972) Acta Chem Scand 26:1827CrossRefGoogle Scholar
  41. 41.
    Enjalbert R, Galy J (1986) J Acta Crystallogr C42:1467Google Scholar
  42. 42.
    Pyrz WD, Blom DA, Raveendran Shiju N, Guliants VV, Vogt T, Buttrey DJ (2009) Catal Today 142:320CrossRefGoogle Scholar
  43. 43.
    Murayama H, Vitry D, Ueda W, Fuchs G, Anne M, Dubois JL (2007) Appl Catal A Gen 318:137CrossRefGoogle Scholar
  44. 44.
    Yamazoe N, Ekström T, Kihlborg L (1975) Acta Chem Scand A 29:404CrossRefGoogle Scholar
  45. 45.
    Solsona B, Vázquez MI, Ivars F, Dejoz A, Concepción P, López-Nieto JM (2007) J Catal 252:271CrossRefGoogle Scholar
  46. 46.
    Botella P, Dejoz A, Abello MC, Vázquez MI, Arrú L, López-Nieto JM (2009) Catal Today 142:272CrossRefGoogle Scholar
  47. 47.
    Popova GY, Andrushkevich TV, Dovlitova LS, Aleshina GA, Chesalov YA, Ishenko AV, Ishenko EV, Plyasova LM, Malakhov VV, Khramov MI (2009) Appl Catal A Gen 353:249CrossRefGoogle Scholar
  48. 48.
    Martin K, Brown ID (1995) J Solid State Chem 115:395CrossRefGoogle Scholar
  49. 49.
    Pearson RG (1975) Proc Natl Acad Sci USA 72:2104CrossRefGoogle Scholar
  50. 50.
    Govindasamy A, Muthukumar K, Yu J, Xu Y, Guliants VV (2010) J Phys Chem C 114:4544CrossRefGoogle Scholar
  51. 51.
    Rey MJ, Dehaudt PH, Joubert JC, Lambert-Andron B, Cyrot M, Cyrot-Lackmann F (1990) J Solid State Chem 86:101Google Scholar
  52. 52.
    Kihlborg L (1960) Acta Chem Scand 14:1612CrossRefGoogle Scholar
  53. 53.
    Kihlborg L (1963) Acta Chem Scand 17:1485CrossRefGoogle Scholar
  54. 54.
    Kihlborg L (1963) Ark Kemi 21:257Google Scholar
  55. 55.
    Shannon RD (1976) Acta Cryst A32:751Google Scholar
  56. 56.
    Grzybowska-Świerkosz B (1997) Appl Catal A Gen 157:409CrossRefGoogle Scholar
  57. 57.
    Wachs IE, Jehng J, Ueda W (2005) J Phys Chem B 109:2275CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Xin Li
    • 1
  • Douglas J. Buttrey
    • 1
  • Douglas A. Blom
    • 2
  • Thomas Vogt
    • 3
  1. 1.Department of Chemical Engineering, Center for Catalytic Science and TechnologyUniversity of DelawareNewarkUSA
  2. 2.NanoCenter and Electron Microscopy CenterUniversity of South CarolinaColumbiaUSA
  3. 3.NanoCenter and Department of Chemistry and BiochemistryUniversity of South CarolinaColumbiaUSA

Personalised recommendations