Topics in Catalysis

, Volume 54, Issue 10–12, pp 595–604 | Cite as

Towards an Understanding of the Reaction Pathways in Propane Ammoxidation Based on the Distribution of Elements at the Active Centers of the M1 Phase of the MoV(Nb,Ta)TeO System

  • R. K. Grasselli
  • C. G. Lugmair
  • A. F. VolpeJr.
Original Paper


The M1 phase of the MoV(Nb,Ta)TeO system is one of the most effective catalysts for the ammoxidation and selective oxidation of propane to acrylonitrile (AN) and acrylic acid, respectively. The active centers of the M1 phase reside on the ab planes of this crystalline material (i.e., the (001) lattice face). Early on we proposed that the thus located active centers contain all key catalytic elements strategically placed for the conversion of propane to AN. These seven element comprising active centers contain: five metal oxide octahedra (2 V 0.32 5+ /Mo 0.68 6+ , 1 V 0.62 4+ /Mo 0.38 6+ , 2Mo 0.5 6+ /Mo 0.5 5+ ) and two Te4+—oxygen sites. In this contribution we analyze the various compositional probabilities of the seven element active centers and their additional eight element surroundings and conclude that there are 32 possible compositional arrangements of this 15 element assembly. From the diverse structural arrangements, diverse catalytic properties can be assigned to the individual sites, leading to diverse propane reaction pathways. We conclude that there are 22% AN forming, 22% propylene, 10% waste and 46% inert sites. After normalization these sites are deemed to lead to the following product yields: 41% AN, 41% propylene and 18% waste. The highest experimentally attained AN yield from propane is 42%, employing M1 phase only, which coincides with the predicted value of a concerted mechanism. Higher AN yields are, however, anticipated, up to a lofty upper limit of 82%, by allowing also for a consecutive mechanism (C3° → C 3 = →AN). This possibility can be rationalized on the basis of the existence of vicinal C3° → C 3 = /C 3 = →AN sites whose presence is plentiful on the catalytically important ab planes of M1. The placement and efficiency of these sites is, however, not perfect; therefore the upper AN yield limit is not realized in practice. Our analysis of the elemental distribution at the active centers and their immediate surroundings provides us with new insights into the relationship between structure and catalytic reaction mechanisms of the M1 phase and might serve as a guide towards a redesign of the M1 composition, so as to attain higher AN yields from propane. It provides a challenging task for the synthetic chemist.


Ammoxidation Propane Propylene NH3 MoV(Nb,Ta)TeO M1 phase 


  1. 1.
    Grasselli RK (2002) Top Catal 21:79CrossRefGoogle Scholar
  2. 2.
    Grasselli RK, Tenhover MA (2008) Ammoxidation. In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of Heterogeneous Catalysis, 2nd ed, Ch. 14.11.9Google Scholar
  3. 3.
    Thomas JM (2011) Top Catal. This issue and references thereinGoogle Scholar
  4. 4.
    Grasselli RK, Burrington JD, Buttrey DJ, DeSanto P Jr, Lugmair CG, Volpe AF Jr, Weingand T (2003) Top Catal 23:5CrossRefGoogle Scholar
  5. 5.
    Hatano M, Kayo A (1988) European Patent 318 295Google Scholar
  6. 6.
    Ushikubo T, Oshima K, Kayo A, Umezawa T, Kiyono K, Sawaki I (1992) European Patent 529 853Google Scholar
  7. 7.
    Hinago H, Komada S, Kogyo AK (2000) US Patent 6,063,728Google Scholar
  8. 8.
    Hagemeyer A, Jandeleit B, Liu Y, Poojary DM, Turner HW, Volpe AF Jr, Weinberg WH (2001) Appl Catal A General 221:23CrossRefGoogle Scholar
  9. 9.
    Borade R, Poojary D, Zhau X (2002) US Patent 6,395,552Google Scholar
  10. 10.
    Guan S, van Erden L, Haushalter H, Zhau X, Wang X, Srinivasen R (2002) EP 1,001,846 (2002); ibid., US Patent 6,149,882Google Scholar
  11. 11.
    Guram A, Hagemeyer A, Lugmair CG, Turner HW, Volpe AF Jr, Weinberg WH, Yaccato K (2004) Adv Synth Catal 346:215CrossRefGoogle Scholar
  12. 12.
    Botella P, Conception P, Lopez-Nieto JM, Moreno Y (2005) Catal Today 99:51CrossRefGoogle Scholar
  13. 13.
    Baca M, Aouine M, Dubois JL, Millet JMM (2005) J Catal 233:234CrossRefGoogle Scholar
  14. 14.
    Grasselli RK, Buttrey DJ, Burrington JD, Andersson A, Holmberg J, Ueda W, Kubo J, Lugmair CG, Volpe AF Jr (2006) Top Catal 38:7CrossRefGoogle Scholar
  15. 15.
    Grasselli RK (2005) Catal Today 99:23CrossRefGoogle Scholar
  16. 16.
    Korochenko P, Shiju NR, Dozier AK, Graham UM, Guerro-Perez MO, Guliants VV (2008) Top Catal 50:43CrossRefGoogle Scholar
  17. 17.
    Guliants VV (2011) Top Catal. This issue and references thereinGoogle Scholar
  18. 18.
    Vaarkamp M, Ushikubo T (1998) Appl Catal A 174:99CrossRefGoogle Scholar
  19. 19.
    Ushikubo T (2000) Catal Today 57:331CrossRefGoogle Scholar
  20. 20.
    Ueda W, Vitry D, Katou T (2005) Catal Today 99:43CrossRefGoogle Scholar
  21. 21.
    Grasselli RK, Buttrey DJ, DeSanto P Jr, Burrington JD, Lugmair CG, Volpe AF Jr, Weingand T (2004) Catal Today 91–92:251CrossRefGoogle Scholar
  22. 22.
    Jang YH, Goddard WA III (2001) Top Catal 15:273CrossRefGoogle Scholar
  23. 23.
    Grasselli RK (2011) Lett Catal. In preparationGoogle Scholar
  24. 24.
    Li X, Buttrey DJ, Blom DA, Vogt T (2011) Top Catal. This issueGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • R. K. Grasselli
    • 1
    • 2
  • C. G. Lugmair
    • 3
  • A. F. VolpeJr.
    • 3
  1. 1.Center for Catalytic Science and TechnologyUniversity of DelawareNewarkUSA
  2. 2.Department of ChemistryTechnische Universität MünchenMünchenGermany
  3. 3.Symyx Technologies IncSanta ClaraUSA

Personalised recommendations