Topics in Catalysis

, Volume 54, Issue 5–7, pp 334–348 | Cite as

Effect of Particle Size and Adsorbates on the L3, L2 and L1 X-ray Absorption Near Edge Structure of Supported Pt Nanoparticles

Original Paper

Abstract

Pt nano-particles from about 1 to 10 nm have been prepared on silica, alkali-silica, alumina, silica-alumina, carbon and SBA-15 supports. EXAFS spectra of the reduced catalysts in He show a contraction of the Pt–Pt bond distance as particle size is decreased below 3 nm. The bond length decreased as much as 0.13 Å for 1 nm Pt particles. Adsorption of CO and H2 lead to a increase in Pt–Pt bond distance to that near Pt foil, e.g., 2.77 Å. In addition to changes in the Pt bond distance with size, as the particle size decreases below about 5 nm there is a shift in the XANES to higher energy at the L3 edge, a decrease in intensity near the edge and an increase in intensity beyond the edge. We suggest these features correspond to effects of coordination (the decrease at the edge) and lattice contraction (the increase beyond the edge). At the L2 edge, there are only small shifts to higher energy at the edge. However, beyond the edge, there are large increases in intensity with decreasing particle size. At the L1 edge there are no changes in position or shape of the XANES spectra. Adsorption of CO and H2 also lead to changes in the L3 and L2 edges, however, no changes are observed at the L1 edge. Density Functional Theory and XANES calculations show that the trends in the experimental XANES can be explained in terms of the states available near the edge. Both CO and H2 adsorption result in a depletion of states at the Fermi level but the creation of anti-bonding states above the Fermi level which give rise to intensity increases beyond the edge.

Keywords

Pt nanoparticles Bond length contraction Particle size effect in XANES spectra Particle size effect in Pt bond length Pt XANES EXAFS 

References

  1. 1.
    Heiz U, Bullock EL (2004) J Mater Chem 14:564–577CrossRefGoogle Scholar
  2. 2.
    Koningsberger DC, Mojet BL, van Dorssen GE, Ramaker DE (2000) Top Catal 10:143–155CrossRefGoogle Scholar
  3. 3.
    Ramaker DE, Koningsberger DC (2010) Phys Chem Chem Phys 12:5514–5534CrossRefGoogle Scholar
  4. 4.
    Lytle FW, Wei PSP, Greegor RB, Via GH, Sinfelt JH (1979) J Chem Phys 70:4849–4855CrossRefGoogle Scholar
  5. 5.
    Short DR, Mansour AN, Cook JW, Sayers DE, Katzer JR (1983) J Catal 82:299–312CrossRefGoogle Scholar
  6. 6.
    Ichikuni N, Iwasawa Y (1993) Catal Lett 20:87–95CrossRefGoogle Scholar
  7. 7.
    Mansour AN, Cook JW, Sayers DE (1984) J Phys Chem 88:2330–2334CrossRefGoogle Scholar
  8. 8.
    Ankudinov AL, Rehr JJ, Low JJ, Bare SR (2002) Top Catal 18:3–7CrossRefGoogle Scholar
  9. 9.
    Ankudinov AL, Rehr JJ, Low JJ, Bare SR (2002) J Chem Phys 116:1911–1919CrossRefGoogle Scholar
  10. 10.
    Schweitzer N, Xin H, Nikolla E, Linic S, Miller J (2010) Top Catal 53:348–356CrossRefGoogle Scholar
  11. 11.
    Lewis PH (1968) J Catal 11:162–174CrossRefGoogle Scholar
  12. 12.
    Samant MG, Boudart M (1991) J Phys Chem 95:4070–4074CrossRefGoogle Scholar
  13. 13.
    Kubota T, Asakura K, Ichikuni N, Iwasawa Y (1996) Chem Phys Lett 256:445–448CrossRefGoogle Scholar
  14. 14.
    Ramaker DE, Mojet BL, Oostenbrink MTG, Miller JT, Koningsberger DC (1999) Phys Chem Chem Phys 1:2293–2302CrossRefGoogle Scholar
  15. 15.
    Ankudinov AL, Rehr JJ, Low J, Bare SR (2001) Phys Rev Lett 86:1642–1645CrossRefGoogle Scholar
  16. 16.
    Reifsnyder SN, Otten MM, Sayers DE, Lamb HH (1997) J Phys Chem B 101:4972–4977CrossRefGoogle Scholar
  17. 17.
    Scott FJ, Mukerjee S, Ramaker DE (2010) J Phys Chem C 114:442–453CrossRefGoogle Scholar
  18. 18.
    Roth C, Benker N, Buhrmester T, Mazurek M, Loster M, Fuess H, Koningsberger DC, Ramaker DE (2005) J Am Chem Soc 127:14607–14615CrossRefGoogle Scholar
  19. 19.
    Scott FJ, Roth C, Ramaker DE (2007) J Phys Chem C 111:11403–11413CrossRefGoogle Scholar
  20. 20.
    Lewis EA, Segre CU, Smotkin ES (2009) Electrochim Acta 54:7181–7185CrossRefGoogle Scholar
  21. 21.
    Dimakis N, Iddir H, Diaz-Morales RR, Liu RX, Bunker G, Chung EH, Smotkin ES (2005) J Phys Chem B 109:1839–1848CrossRefGoogle Scholar
  22. 22.
    Bus E, Ramaker DE, van Bokhoven JA (2007) J Am Chem Soc 129:8094–8102CrossRefGoogle Scholar
  23. 23.
    Teliska A, O’Grady WE, Ramaker DE (2005) J Phys Chem B 109:8076–8084CrossRefGoogle Scholar
  24. 24.
    Teliska M, Murthi VS, Mukerjee S, Ramaker DE (2005) J Electrochem Soc 152:A2159–A2169CrossRefGoogle Scholar
  25. 25.
    Teliska M, Murthi VS, Mukerjee S, Ramaker DE (2007) J Phys Chem C 111:9267–9274CrossRefGoogle Scholar
  26. 26.
    Teliska M, O’Grady WE, Ramaker DE (2004) J Phys Chem B 108:2333–2344CrossRefGoogle Scholar
  27. 27.
    Asakura K, Kubota T, Chun WJ, Iwasawa Y, Ohtani K, Fujikawa T (1999) J Synchrotron Radiat 6:439–441CrossRefGoogle Scholar
  28. 28.
    Safonova OV, Tromp M, van Bokhoven JA, de Groot FMF, Evans J, Glatzel P (1616) J. Phys Chem B 110(2006):16162–16164Google Scholar
  29. 29.
    Kubota T, Asakura K, Iwasawa Y (1997) Catal Lett 46:141–144CrossRefGoogle Scholar
  30. 30.
    Kang JH, Menard LD, Nuzzo RG, Frenkel AI (2006) J Am Chem Soc 128:12068–12069CrossRefGoogle Scholar
  31. 31.
    Stoupin S (2009) J Chem Theory Comput 5:1337–1342CrossRefGoogle Scholar
  32. 32.
    Guo N, Fingland BR, Williams WD, Kispersky VF, Jelic J, Delgass WN, Ribeiro FH, Meyer R, Miller JT (2010) Phys Chem Chem Phys 12:5678–5693CrossRefGoogle Scholar
  33. 33.
    Rioux RM, Hsu BB, Grass ME, Song H, Somorjai GA (2008) Catal Lett 126:10–19CrossRefGoogle Scholar
  34. 34.
    Miller JT, Kropf AJ, Zha Y, Regalbuto JR, Delannoy L, Louis C, Bus E, van Bokhoven JA (2006) J Catal 240:222–234CrossRefGoogle Scholar
  35. 35.
    Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) J Phys Condens Matter 14:2717–2744CrossRefGoogle Scholar
  36. 36.
    Vanderbilt D (1990) Phys Rev B 41:7892–7895CrossRefGoogle Scholar
  37. 37.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192CrossRefGoogle Scholar
  38. 38.
    Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249CrossRefGoogle Scholar
  39. 39.
    Gao SP, Pickard CJ, Perlov A, Milman V (2009) J Phys Condens Matter 21:104203CrossRefGoogle Scholar
  40. 40.
    Gao SP, Pickard CJ, Payne MC, Zhu J, Yuan J (2008) Phys Rev B 77:115122CrossRefGoogle Scholar
  41. 41.
    Seabourne CR, Scott AJ, Brydson R, Nicholls RJ (2009) Ultramicroscopy 109:1374–1388CrossRefGoogle Scholar
  42. 42.
    Feibelman PJ, Hammer B, Norskov JK, Wagner F, Scheffler M, Stumpf R, Watwe R, Dumesic J (2001) J Phys Chem B 105:4018–4025CrossRefGoogle Scholar
  43. 43.
    Kumar V, Kawazoe Y (2008) Phys Rev B 77:205418CrossRefGoogle Scholar
  44. 44.
    Hu CH, Chizallet C, Mager-Maury C, Corral-Valero M, Sautet P, Toulhoat H, Raybaud P (2010) J Catal 274:99–110CrossRefGoogle Scholar
  45. 45.
    Vaarkamp M, Miller JT, Modica FS, Koningsberger DC (1996) J Catal 163:294–305CrossRefGoogle Scholar
  46. 46.
    Nepijko SA, Klimenkov M, Adelt M, Kuhlenbeck H, Schlogl R, Freund HJ (1999) Langmuir 15:5309–5313CrossRefGoogle Scholar
  47. 47.
    Vila F, Rehr JJ, Kas J, Nuzzo RG, Frenkel AI (2008) Phys Rev B 78:121404CrossRefGoogle Scholar
  48. 48.
    Tew MW, Miller JT, van Bokhoven JA (2009) J Phys Chem C 113:15140–15147CrossRefGoogle Scholar
  49. 49.
    Williams MF, Fonfe B, Woltz C, JentyS A, van Veen JAR, Lercher JA (2007) J Catal 251:497–506CrossRefGoogle Scholar
  50. 50.
    Ramallo-Lopez JM, Santori GF, Giovanetti L, Casella ML, Ferretti OA, Requejo FG (2003) J Phys Chem B 107:11441–11451CrossRefGoogle Scholar
  51. 51.
    Stakheev AY, Zhang Y, Ivanov AV, Baeva GN, Ramaker DE, Koningsberger DC (2007) J Phys Chem C 111:3938–3948CrossRefGoogle Scholar
  52. 52.
    Nikolla E, Schwank J, Linic S (2009) J Am Chem Soc 131:2747–2754CrossRefGoogle Scholar
  53. 53.
    Muller DA, Singh DJ, Silcox J (1998) Phys Rev B 57:8181–8202CrossRefGoogle Scholar
  54. 54.
    Ching WY, Rulis P (2009) J Phys Condens Matter 21:104202CrossRefGoogle Scholar
  55. 55.
    Keast VJ, Scott AJ, Brydson R, Williams DB, Bruley J (2001) J Microsc 203:135–175CrossRefGoogle Scholar
  56. 56.
    Muller DA (1998) Phys Rev B 58:5989–5995CrossRefGoogle Scholar
  57. 57.
    Hammer B (2006) Top Catal 37:3–16CrossRefGoogle Scholar
  58. 58.
    Hammer B, Norskov JK (2000) Adv Catal 45:71–129CrossRefGoogle Scholar
  59. 59.
    Zhao Y, Feltes TE, Regalbuto JR, Meyer RJ, Klie RF (2010) J Appl Phys 108:063704CrossRefGoogle Scholar
  60. 60.
    Ankudinov AL, Nesvizhskii AI, Rehr JJ (2001) J Synchrotron Radiat 8:92–95CrossRefGoogle Scholar
  61. 61.
    van Bokhoven JA, Miller JT (2007) J Phys Chem C 111:9245–9249CrossRefGoogle Scholar
  62. 62.
    Mason MG (1983) Phys Rev B 27:748–762CrossRefGoogle Scholar
  63. 63.
    Bus E, van Bokhoven JA (2007) J Phys Chem C 111:9761–9768CrossRefGoogle Scholar
  64. 64.
    Richter B, Kuhlenbeck H, Freund HJ, Bagus PS (2004) Phys Rev Lett 93:026805CrossRefGoogle Scholar
  65. 65.
    Boyanov BI, Morrison TI (1996) J Phys Chem 100:16318–16326CrossRefGoogle Scholar
  66. 66.
    Blyholder G (1964) J Phys Chem 60:2772–2778CrossRefGoogle Scholar
  67. 67.
    Henkelman G, Arnaldsson A, Jonsson H (2006) Comput Mater Sci 36:354–360CrossRefGoogle Scholar
  68. 68.
    Kresse G, Gil A, Sautet P (2003) Phys Rev B 68:073401CrossRefGoogle Scholar
  69. 69.
    Ankudinov AL, Rehr JJ, Bare SR (2000) Chem Phys Lett 316:495–500CrossRefGoogle Scholar
  70. 70.
    Poelsema B, Palmer RL, Comsa G (1982) Surf Sci 123:152–164CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Chemical Sciences and Engineering DivisionArgonne National LabArgonneUSA

Personalised recommendations